	TECHNICAL SPECIFICATION No. I-ET-3010.2Q-1260-94						-940-P4X-001					
B	2	CLIEN.	T:		MARLIM LE	STE E SUI	<u>_</u>	S	SHEET:	1	of	32
=}; PETROBRAS		JOB: BASIC DESIGN – REVIT I										
PETRO	BRAS	AREA:			MARLIM LE							
		TITLE:								ESI	JP	
				(CHEMICAL	INJECTIO	N	F	11	NTEF		
MICROSO	FT WORD) / V.	2016 / I-ET-	3010.2Q-12	60-940-P4X-	001_C.docx		<u> </u>				
				11	NDEX OF R	EVISIONS						
REV.				DESCF	RIPTION AN	ID/OR REV	ISED SHEE	ETS				
0	ORIGINA	AL IS	SSUE									
А	REVISE	D WI	HERE INDI	CATED								
В	REVISE	D WI	HERE INDI	CATED								
С	REVISE	D WI	HERE INDI	CATED								
	REV.	0	REV. A	REV. B	REV. C	REV. D	REV. E	REV. F	RE\	/. G	RE	EV. H
DATE	DEC/1		JUL/05/24	JUL/12/24	JUL/22/24							
EXECUTION	ATK		ATK9	ATK9	EVP9				 		1	
CHECK APPROVAL	CSG BRR		BXB3 BRR0	U43K BRR0	BXB3 U43K				1		1	
						PROHIBITED C	UTSIDE OF THE	EIR PURPOSE	<u> </u>		1	
			S N-0381 REV.									

	TECHNICAL SPECIFICATION No. I-ET-30	10.2D-1260-940-P4X-001 REV. C						
BR	AREA: MARLIM LESTE E SUL	SHEET: 2 of 32						
PETROBRAS	TITLE:							
7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	CHEMICAL INJECTION INT							

SUMMARY

1	INTRODUCTION	3
2	REFERENCE AND APPLICABLE DOCUMENTS	3
3	DEFINITIONS AND ABBREVIATIONS	4
4	SCOPE OF SUPPLY	4
5	SYSTEM DESCRIPTION	5
6	CHEMICAL DESCRIPTION AND INJECTION POINTS	7
7	CHEMICAL INJECTION PUMPS	.14
8	CHEMICAL STORAGE	.21
9	CHEMICAL LOADING	.25
10	LAYOUT REQUIREMENTS	.25
11	SAFETY REQUIREMENTS	.26
12	ANNEX	.26

	TECHNICAL SPECIFICATION	I-ET-3010.2D-1260-940	-P4X-001	REV.	С	
BR	AREA: MARLIM LESTE E SUL					
PETROBRAS	ROBRAS CHEMICAL INJECTION					
	INTER	RNAL				

1 INTRODUCTION

The Floating Production Storage and Offloading (FPSO) Unit of MARLIM LESTE E SUL shall be equipped with an OIL & GAS CHEMICAL INJECTION UNIT, a PRODUCED WATER CHEMICAL INJECTION UNIT and an INJECTION WATER CHEMICAL INJECTION UNIT to improve operation condition for the equipment, lines, and pipelines.

1.1 PROJECT INFORMATION

Marlim Leste and Marlim Sul oil fields are deep water post-salt fields located in the Campos Basin, southeastern Brazilian oceanic region.

1.2 OBJECTIVE

The objective of this document is to define the design basis for the OIL & GAS CHEMICAL INJECTION UNIT, PRODUCED WATER CHEMICAL INJECTION UNIT and INJECTION WATER CHEMICAL INJECTION UNIT.

2 REFERENCE AND APPLICABLE DOCUMENTS

#	REFERENCE	TITLE
1	I-ET-3010.00-1200-940-P4X-005	CHEMICAL INJECTION POINTS
2	I-FD-3010.2Q-1200-940-P4X-002	CHEMICAL INJECTION POINTS
3	I-ET-3010.2Q-1200-200-P4X-001	PIPING SPECIFICATION FOR TOPSIDES
4	I-RL-3010.2Q-1200-940-P4X-003	DRAINAGE SYSTEM GUIDELINES
5	I-ET-3010.00-1200-510-P4X-001	METALLIC TANKS DESIGN FOR TOPSIDES
6	API STANDARD 2000	VENTING ATMOSPHERIC AND LOW-PRESSURE STORAGE TANKS
7	NFPA 30	FLAMMABLE AND COMBUSTIBLE LIQUIDS CODE (FOR FIRE CASE)
8	I-ET-3010.00-1200-310-P4X-002	POSITIVE DISPLACEMENT PUMPS SPECIFICATION
9	I-ET-3010.00-5140-712-P4X-001	LOW-VOLTAGE INDUCTION MOTORS FOR OFFSHORE UNITS
10	I-ET-3010.00-1200-800-P4X-013	GENERAL CRITERIA FOR INSTRUMENTATION PROJECTS
11	I-ET-3010.2Q-1200-800-P4X-005	FIELD INSTRUMENTATION
12	I-ET-3010.00-1200-940-P4X-002	GENERAL TECHNICAL TERMS
13	I-RL-3010.2Q-1350-960-P4X-002	MOTION ANALYSIS
14	I-ET-3010.00-1200-588-P4X-001	SAMPLE CONNECTIONS
15	I-ET-3010.2Q-1400-196-P4X-001	ERGONOMICS REQUIREMENTS FOR TOPSIDE
16	I-FD-3010.2Q-5400-947-P4X-001	SAFETY DATA SHEET - TOPSIDES

	TECHNICAL SPECIFICATION	I-ET-3010.2D-1260-940	-P4X-001	REV.	С	
BR	AREA: MARLIM LE	MARLIM LESTE E SUL				
PETROBRAS	TITLE:	INICATION	ESU	Р		
	CHEMICAL	CHEMICAL INJECTION				

3 DEFINITIONS AND ABBREVIATIONS

3.1 **DEFINITIONS**

The latest revision of I-ET-3010.00-1200-940-P4X-002 – General Technical Terms defines general technical terms in order to equalize understanding of all design documents.

3.2 ABBREVIATIONS

g: Gravitational acceleration

SS: Stainless Steel

API American Petroleum Institute

CONAMA Brazilian National Council of Environment (Conselho Nacional do Meio Ambiente)

DBNPA 2,2-dibromo-3-nitrilopropionamide
FPSO Floating Production Storage Offloading
HDPC Hydrocarbon Dew Point Control Unit

HP High Pressure L/h Liter per hour LP Low Pressure

ppm_w parts per million (on a weight basis) ppm_v parts per million (on a volume basis)

PW Produced Water

PWT Produced Water Treatment
SRU Sulphate Removal Unit (Package)

THPS Tetrakis Hydroxymethyl Phosphonium Sulfate

WCT Wet Christmas Tree
WI Water Injection
SCF Standard Cubic Feet

P&ID Piping and Instrument Diagram

UFU Ultrafiltration Unit
MEG Monoethylene Glycol

PLC Programmable Logic Controller

CCR Central Control Room
PHA Preliminary Hazard Analysis

4 SCOPE OF SUPPLY

4.1 GENERAL

PACKAGER scope of supply shall include the following CHEMICAL INJECTION UNITS:

Table 1 – PACKAGER Scope of Supply.

TAG	DESCRIPTION	QUANTITY
UQ-1261001	OIL AND GAS CHEMICAL INJECTION UNIT	1 x 100%
UQ-1262001	PRODUCED WATER CHEMICAL INJECTION UNIT	1 x 100%
UQ-1263001	INJECTION WATER CHEMICAL INJECTION UNIT	1 x 100%

Each CHEMICAL INJECTION UNIT shall include pumps, tanks, structures, piping, instrumentation, and all necessary accessories according to the following items.

	TECHNICAL SPECIFICATION	I-ET-3010.2D-1260-940	-P4X-001	REV.	С	
BR	AREA: MARLIM LE	A: MARLIM LESTE E SUL				
PETROBRAS	TITLE:	INTECTION	ESI	JP		
	CHEMICAL	INJECTION	INTER	RNAL		

5 SYSTEM DESCRIPTION

5.1 GENERAL

Chemical injection system is used to improve and enhance the operating conditions of topsides equipment and subsea lines. The oil, gas, produced water and injection water treatment systems shall be designed to inject the following chemicals, as stated on Table 2.

The chemical injection for seawater treatment system, included Sodium Bisulfite, SRU Scale Inhibitor, WI Biocide (DBNPA), WI Biocide (THPS), WI Scale Inhibitor, WI Bio Fouling Disperser, Citric Acid and Ultrafiltration Unit (UFU) shall be covered inside the package of each of this units.

5.2 CHEMICALS DOSAGES

5.2.1 The following chemicals and dosages shall be provided for the INJECTION UNITS systems:

Table 2 – Minimum and maximum injection dosage.

	Chamical Braduct	Dosage				
	Chemical Product	Min.	Max.	Unit		
ЭE	Defoamer	20	200	mL/m³ (ppmv)		
JIS	Demulsifier	10	100	mL/m³ (ppm _v)		
진	Scale Inhibitor	20	200	mL/m³ (ppm _v)		
OIL - TOPSIDE	H₂S Scavenger Offloading	20	200	mL/m³ (ppm _v)		
ō	Acetic acid (75%)	100	1000	mL/m³ (ppm _v)		
	Scale Inhibitor	2	30	L/h (per well)		
4	Wax Inhibitor	6	60	L/h (per well)		
SUBSEA	Hydrate Inhibitor (Ethanol / MEG)	200	5000	L/h		
SUB	Asphaltene Inhibitor	6	60	L/h (per well)		
O)	H₂S Scavenger		60	L/h (per well)		
	Demulsifier		50	L/h (per well)		
S	Gas Corrosion Inhibitor	0.5	1	L/10 ⁶ scf gas		
GAS	Hydrate Inhibitor (Ethanol / MEG)	120	1200	L/h per well in gas lift line		
Ω	Polyelectrolyte (continuous)	10	100	mL/m³ (ppm _v)		
일띺	Scale Inhibitor	5	50	mL/m³ (ppm _v)		
PRODUCED WATER	Biocide shock in tanks (shock)		200 ce a week)	mL/m³ (ppm _v)		
<u>_</u>	Oxygen Scavenger	100	200	mL/m³ (ppm _v)		
	Oxygen Scavenger (continuous)	5	25	mL/m³ (ppm _v)		
Z	Oxygen Scavenger shock (without deaerator)		200	mL/m³ (ppm _v)		
TIC R	Biodispersant		20	mL/m³ (ppm _v)		
INJECTION	Biocide shock	100	1000	mL/m³ (ppm _v) 2 x week/1 hour		
	Scale Inhibitor	1	20	mL/m³ (ppm _v)		

	TECHNICAL SPECIFICATION	I-ET-3010.2D-1260-940	-P4X-001	REV.	С
BR	MARLIM LESTE E SUL				
PETROBRAS	TITLE:	ESU			
	CHEMICAL	INJECTION	INTER	NAL	

5.2.2 The calculation of the chemical injection flow rate is performed as follows:

Minimum Flow = Minimum Process Flow x Minimum Chemical Dosage

Maximum Flow = Maximum Process Flow x Maximum Chemical Dosage.

5.3 CHEMICALS PROPERTIES

The following chemical properties may be used in chemical unit's design. It shall be confirmed and may be updated during Detailed Design phase.

Table 3 – Chemical Products Properties for Oil and Gas.

	Viscosity (cP)		Ref. Temp.	Den	sity	Ref. Temp.			
Chemical Product			Visc.	(kg/m³)		Density	Toxic	Corrosive	Flammable
	Min.	Max.	°C	Min. Max.		°C			
Defoamer	16	30	25	778	865	20	YES	NO	YES
Demulsifier	10	00	25	1003		20	YES	NO	YES
Scale Inhibitor - Topsides	10	00	25	11	40	16	YES	NO	YES
H ₂ S Scavenger - Offloading	4	750	21	1005	1167	21	YES	YES	YES
Acetic acid (75%)	1.	21	20	1051		20	YES	YES	YES
Scale Inhibitor - Subsea	2	.6	16	11	19	16	YES	NO	YES
Wax Inhibitor - Subsea	4	0	23	89	90	25	YES	YES	YES
Asphaltene Inhibitor - Subsea	2	.0	25	920	932	16	YES	NO	YES
H ₂ S Scavenger - Subsea	4	4	23	11	10	20	YES	YES	YES
Hydrate Inhibitor (Ethanol)	1	2	20	785	800	20	YES	YES	YES
Hydrate Inhibitor (MEG)	20	20.9		11	15	20	YES	YES	YES
Gas Corrosion Inhibitor	2	.0	14~37	90	02	14~37	YES	YES	YES
Dilution Water	0.7	1.2		998	1016		NO	YES	NO

Table 4 – Chemical Products Properties for Produced Water.

Chemical Product	Viscosity (cP)			nsity /m³)	Toxic	Corrosive	Flammable
	Min.	Max.	Min.	Max			
Polyelectrolyte	1	100	970	1020	NO	YES	YES
Scale Inhibitor	1	100	1050	1380	NO	YES	YES
Biocide shock (THPS 35%)	20	50	1300	1450	YES	YES	YES
Oxygen Scavenger	1	15	1250	1450	YES	YES	NO
Dilution Water	0.7	1.2	998	1016	NO	YES	NO

Table 5 – Chemical Products Properties for Injection Water.

	Visc	osity	Den	sity			
Chemical Product	(c	P)	(kg/	m³)	Toxic	Corrosive	Flammable
	Min.	Max.	Min.	Max.			
Oxygen Scavenger	1	15	1250	1450	YES	YES	NO
Biodispersant	50	250	900	1130	YES	NO	NO
Biocide Shock	20	50	1300	1450	YES	YES	YES
Scale Inhibitor	1	100	1050	1380	YES	NO	YES

	TECHNICAL SPECIFICATION	I-ET-3010.2D-1260-940	-P4X-001	REV.	С
BR	AREA: MARLIM LESTE E SUL				32
PETROBRAS	TITLE: CHEMICAL INJECTION		ESUP		
	CHEMICAL	INJECTION	INTERN		

6 CHEMICAL DESCRIPTION AND INJECTION POINTS

A preliminary estimative for pumps power, discharge pressures and chemical flowrates for each injection point is presented on Chapter 7, on tables 6, 7 and 8, alongside with the facilities configurations. These calculations were based on preliminary piping arrangement and shall be confirmed/updated during Detailed Design.

6.1 OIL AND GAS CHEMICALS (TOPSIDES)

6.1.1 DEFOAMER

To prevent foaming in the topsides facilities, defoamer shall be injected continuously into the following points:

- Production manifolds (train A and train B) downstream liquid sample point.
- Upstream high pressure separator level control valve (train A and train B).
- Test manifold downstream liquid sample point.
- Upstream test separator level control valve.

Injection Fluid Basis: Liquid flowrate (oil + produced water).

Defoamer will be pumped to the above cited injection points by injection pumps B-UQ-1261001-01A/C. The pumps shall have dedicated pump heads, one for each injection point. Each pump head flow rate shall be based on a maximum dosage rate.

6.1.2 **DEMULSIFIER**

To break water-in-oil emulsions in the topsides facilities, demulsifier shall be injected into the following points:

- Production manifolds (train A and train B) downstream liquid sample point.
- Pre-Oil Dehydrator (train A and train B) upstream oil/oil pre-heater.
- Oil Dehydrator (train A and train B) upstream pre heater.
- Test manifold downstream liquid sample point.

Injection Fluid Basis: Liquid flowrate (oil + produced water).

Demulsifier will be pumped to the above cited injection points by injection pumps B-UQ-1261001-02A/C. The pumps shall have dedicated pump heads, one for each injection point. Each pump head flow rate shall be based on a maximum dosage rate.

	TECHNICAL SPECIFICATION	I-ET-3010.2D-1260-940	-P4X-001	REV.	С
<i>BR</i>	AREA: MARLIM LESTE E SUL				32
PETROBRAS	TITLE: CHEMICAL INJECTION		ESUP		
	CHEMICAL	INJECTION	INTER	RNAL	

6.1.3 H₂S SCAVENGER OFFLOADING

Hydrogen sulfide (H₂S) scavenger for oil shall be injected into the following points:

- Downstream oil coolers (P-1223005A/D).
- TQ-1223502.
- Produced water inlet line on Produced water tank, TQ-5331501A/C.
- Transfer header in HULL system

Injection Fluid Basis: Oil flowrate (for pumps and tanks points); Offloading flowrate (for transfer header).

H₂S Scavenger will be pumped to the above cited injection points by injection pumps B-UQ-1261001-03A/B. The pumps shall have dedicated pump heads, one for each injection point. Each pump head flow rate shall be based on a maximum dosage rate.

6.1.4 ACETIC ACID

The purpose of acid injection is to reduce the dissolved oil content in the produced water in order to comply with CONAMA regulation and the analytical Standard Method (SM) SM-5520B for produced water discharge to overboard.

Acetic acid shall be injected continuously into the following points:

- Production Manifold A/B.
- Upstream Settling tanks TQ-1223501A/C.
- Test Manifold.

Injection Fluid Basis: Produced water flowrate.

Acetic acid will be pumped to the above cited injection points by injection pumps B-UQ-1261001-04A/B. The pumps shall have dedicated pump heads, one for each injection point. Each pump head flow rate shall be based on a maximum dosage rate.

6.1.5 SCALE INHIBITOR TOPSIDE

To prevent scaling in the topsides facilities, scale inhibitor shall be injected continuously into the following points:

- Production manifolds (train A and train B) downstream liquid sample point.
- Test manifold downstream liquid sample point.
- Downstream the Settling Tank oil pump and upstream oil/oil pre-heater (P-1223002A/D), train A and train B
- Oil Dehydrator (train A and train B) upstream mixing valve.

	TECHNICAL SPECIFICATION	I-ET-3010.2D-1260-940	-P4X-001	REV.	С
BR	AREA: MARLIM LESTE E SUL				32
PETROBRAS	TITLE:	INJECTION	ESUF		
	CHEMICAL	CHEMICAL INJECTION			

Injection Fluid Basis: Produced water flowrate.

Scale Inhibitor will be pumped to the above cited injection points by injection pumps B-UQ-1261001-05A/C. The pumps shall have dedicated pump heads, one for each injection point. Each pump head flow rate shall be based on a maximum dosage rate.

6.1.6 GAS CORROSION INHIBITOR

Corrosion inhibitor shall be injected continuously into the following points:

- Condensate from fuel gas K.O. drum (V-5135001)
- Fuel gas K.O drum (V-5135001), upstream fuel gas pressure control valve
- Gas export pipeline.

Injection Fluid Basis: Gas flowrate.

Gas Corrosion Inhibitor will be pumped to the above cited injection points by injection pumps B-UQ-1261001-11A/B. The pumps shall have dedicated pump heads, one for each injection point. Each pump head flow rate shall be based on a maximum dosage rate.

6.1.7 HYDRATE INHIBITOR TOPSIDE

The hydrate inhibitor injection may be required on the following points:

- Condensate line from FT-1233001A/B
- Condensate line from V-1233001
- Condensate line from V-T-1233001
- Upstream FV-1233034
- Condensate line from FT-1235001A/B
- Condensate line from V-1235001

The hydrate inhibitor shall be defined estimating its concentration in each stream to keep the hydrate formation temperature at least 5°C below the stream temperature.

The following flowrates below were estimated for each point listed above and shall be confirmed/updated during Detailed Design.

- Condensate line from FT-1233001A/B: 1 L/h (continuous)
- Condensate line from V-1233001: 1 L/h (continuous)
- Condensate line from V-T-1233001: 1L/h (continuous)
- Upstream FV-1233034: 1 L/h (continuous)
- Condensate line from FT-1235001A/B: 2 L/h (continuous)
- Condensate line from V-1235001: 30 L/h (continuous)

	TECHNICAL SPECIFICATION	I-ET-3010.2D-1260-940	-P4X-001	REV.	С
BR	AREA: MARLIM LE	SHEET: 10	of	32	
PETROBRAS	TITLE:		ESU		
	CHEMICAL	INJECTION	INTER	NAL	

Hydrate inhibitor will be pumped to the above cited injection points by injection pump B-UQ-1261001-13A/D. The pump shall have dedicated pump heads, one for each injection point. Each pump head flow rate shall be based on a maximum dosage rate.

6.2 OIL AND GAS CHEMICALS (SUBSEA)

6.2.1 H₂S SCAVENGER SUBSEA

Hydrogen sulfide (H₂S) scavenger for oil shall be injected into downhole or subsea Christmas trees through umbilical. The injection is planned to be continuous.

H₂S scavenger will be pumped to the above cited injection points by injection pumps B-UQ-1261001-07A/N. One pump head shall be dedicated for each well (43 heads). The pump flow rate shall be based on a maximum dosage rate.

6.2.2 SCALE INHIBITOR SUBSEA

To prevent scaling, scale inhibitor shall be injected into downhole or subsea Christmas trees through umbilical. The injection is planned to be continuous.

Injection Fluid Basis: Produced water flowrate.

Scale Inhibitor will be pumped to the above cited injection points by injection pumps B-UQ-1261001-08A/N. One pump head shall be dedicated for each well (43 heads). The pump flow rate shall be based on a maximum dosage rate.

6.2.3 HYDRATE INHIBITOR SUBSEA

Under combinations of high pressure and low temperature, well fluids shall be in the hydrate formation region. To inhibit hydrate formation, ethanol or monoethyleneglycol (MEG) shall be injected into the producing wells wet Christmas trees (WCTs). The injection is not planned to be continuous, however in the (WCTs).

Ethanol or monoethyleneglycol may also be injected to help remove any hydrates that are inadvertently formed, and to equalize pressure across tree valves prior to opening.

The subsea hydrate inhibitor shall be pumped to a distribution header from where it shall flow through each production well via service line or via their respective well umbilical by injection pumps B-UQ-1261001-10A/D (4 x 25%). The pump flow rate for each pump is 1,250 L/h. Since this high capacity pumps are also used to inject via well umbilical, the flowrate shall be reduced and therefore a variable control device (VSD) shall be provided for each of this pumps.

	TECHNICAL SPECIFICATION	I-ET-3010.2D-1260-940	-P4X-001	REV.	С
BR	AREA: MARLIM LESTE E SUL				32
PETROBRAS	TITLE: CHEMICAL INJECTION		ESUP		
	CHEMICAL	INJECTION	INTER	NAL	

Additionally, B-UQ-1261001-14A/F (6 x 20%, 5 heads each, 25 pump heads in operation) shall pump subsea hydrate inhibitor to 23 gas lift injection lines, gas lift header and exportation header. The pump flow rate for each pump is 1200 L/h (each pump head shall also have the capacity of 1200 L/h).

6.2.4 MULTIFUNCTIONAL

A multifunctional pumping system is required to work with the following products for subsea injection: defoamer, H₂S scavenger, scale inhibitor, asphaltene inhibitor, wax inhibitor and demulsifier. These products shall be injected into downhole or subsea Christmas trees through umbilical.

Application rate: 6 to 60 L/h (per well)

The products will be pumped to the above cited injection point by injection pumps B-UQ-1261001-06A/N. One pump head shall be dedicated for each well.

6.3 PRODUCED WATER CHEMICALS

6.3.1 INVERTED EMULSION INHIBITOR (POLYELECTROLYTE)

To break oil-in-water (reverse) emulsions in the produced water treatment system, polyelectrolyte will be injected continuously upstream the flotation units.

Injection Fluid Basis: Produced water flowrate.

Inverted emulsion inhibitor will be pumped to the above cited injection points by injection pumps B-UQ-1262001-01A/B. The pump flow rate shall be based on a maximum dosage rate.

The dilution of the polyelectrolyte in water shall be through pumps B-UQ-1262001-02A/B (2x100%).

Automatic dilution of the product in water shall be provided using Dilution Blending Unit (Z-UQ-1262001-01A/B - 2x100%), with no need for tank dilution. This dosage rate considers dilution in water, in a ratio of 1 (polyelectrolyte): 10 until 30 (water). The diluted polyelectrolyte will be injected upstream the flotation unit by Z-UQ-1262001-01A/B.

6.3.2 INVERTED EMULSION INHIBITOR (POLYELECTROLYTE) DILUTION WATER

Fresh water from reverse osmosis unit will be pumped to the above cited injection points by Inverted Emulsion Inhibitor (Polyelectrolyte) Dilution Water B-UQ-1262001-02A/B (2 x 100%). The pumps shall have dedicated pump heads.

Each pump head flow rate shall be based on a maximum dosage rate.

	TECHNICAL SPECIFICATION	I-ET-3010.2D-1260-940	-P4X-001	REV.	С
BR	AREA: MARLIM LESTE E SUL				32
PETROBRAS	TITLE: CHEMICAL INJECTION		ESUP		
	CHEMICAL	INJECTION	INTE	RNAL	

6.3.3 SCALE INHIBITOR TOPSIDE

To prevent scaling in the produced water treatment system, scale inhibitor shall be continuously injected into the points below. This product shall be the same scale inhibitor injected into the oil plant.

- Water outlet line of TQ-1223501A/C (Settling Tank)
- Water outlet line of Test separator
- Water outlet line of pre-oil dehydrator (TO-1223001A/B)
- Water outlet line of oil dehydrator (TO-1223002A/B)
- Downstream of FT-5331001A/C (produced water filter)

Injection Fluid Basis: Produced water flowrate.

Scale inhibitor will be pumped to the above cited injection points by injection pumps B-UQ-1262001-03A/C. The pumps shall have dedicated pump heads, one head for each injection point. Each pump head flow rate shall be based on a maximum dosage rate.

6.3.4 BIOCIDE THPS 35%

To kill bacteria in the produced water treatment system, facilities shall be provided for periodic shock dosing of biocide THPS (tetrakis(hydroxymethyl) phosphonium sulfate - typically twice a week during two hours).

The chemicals shall be injected into the following points:

- Off-spec water inlet line on Produced water tanks TQ-5331501A/C (shock dosing).
- Oil inlet line on Settling tanks TQ-1223501A/C (shock dosing).
- Inlet line on Slop tanks (shock dosing).
- Off-spec oil inlet line on Off-spec oil tank TQ-1223502 (shock dosing).

Injection Fluid Basis: Effective Tank volume (shock dosing).

Biocide THPS will be pumped to the above cited injection points by injection pumps B-UQ-1262001-04A/B. The pumps shall have dedicated pump heads, one for each injection point. The pump flow rate shall be based on a maximum dosage rate.

6.3.5 OXYGEN SCAVENGER

Injection point shall be provided at the outlet line of the produced water tanks (TQ-5331501A/C), off-spec oil tank (TQ-1223502) and slop tanks before the oxygen analyzer.

	TECHNICAL SPECIFICATION	I-ET-3010.2D-1260-940	-P4X-001	REV.	С
BR	AREA: MARLIM LESTE E SUL				32
PETROBRAS	TITLE:	ESUP			
	CHEMICAL	CHEMICAL INJECTION		NAL	

Injection Fluid Basis: Produced water flowrate (for the produced water tanks injection point) and Oil Skimming flowrate from slop tank to slop vessel.

Oxygen scavenger will be pumped to the above cited injection points by injection pumps B-UQ-1262001-05A/B. The pumps shall have dedicated pump heads.

6.4 INJECTION WATER CHEMICALS

6.4.1 OXYGEN SCAVENGER

Oxygen scavenger injection is required to reduce the oxygen content in the deaeration column from typically 50 ppb (mechanical deaeration alone, i.e., no chemicals) to 10 ppb. The chemical will be injected into accumulator or downstream the deaeration column by-pass line (booster injection pumps suction header) in two conditions: continuously when the deaeration column is in operation and with shock dosage when the deaeration column is out of operation.

This product shall be the same oxygen scavenger injected into the produced water plant.

Oxygen scavenger shall also be continuously injected into produced water pumps suction header when reinjecting.

Injection Fluid Basis: Injection water flowrate (for normal and shock dosing).

Oxygen scavenger injection is also required in the inlet and outlet lines of TQ-5115002 (Dilution Water Storage Tank) and in the outlet line of TQ-5115003 (Flare and Slop Vessel Fresh Water Make-up Tank), since the seawater derivation for UD-5122002A/B is located downstream Ultrafiltration Unit (UT-1251001), therefore upstream deaeration column.

Injection Fluid Basis: RO first pass flowrate for TQ-5115002 and RO second pass flowrate for TQ-5115003 (normal dosing).

Oxygen scavenger will be pumped to the above cited injection points by injection pumps B-UQ-1263001-01A/B (1 pump head supplying for multiple injection points). Each consumer shall have dedicated control valves.

The pump flow rate shall be based on a maximum dosage rate.

6.4.2 BIODISPERSANT

Biodispersant will be continuously injected downstream the deaeration column by-pass line.

Injection Fluid Basis: Injection water flowrate.

	TECHNICAL SPECIFICATION	I-ET-3010.2D-1260-940	-P4X-001	REV.	С
BR	AREA: MARLIM LESTE E SUL				32
PETROBRAS	TITLE: CHEMICAL INJECTION		ESU		
	CHEMICAL	INJECTION	INTER	NAL	

Biodispersant will be pumped to the above injection point by injection pumps B-UQ-1263001-02A/B. The pump flow rate shall be based on a maximum dosage rate.

6.4.3 BIOCIDE

Biocide injection is required to kill bacteria in the injection water system. Facilities are provided for periodic shock dosing of biocide THPS (tetrakis(hydroxymethyl) phosphonium sulphate - typically twice per week for two hours). The chemicals will be injected downstream or upstream the deaeration column.

Injection Fluid Basis: Injection water flowrate.

Biocide THPS will be pumped to the above cited injection point by injection pumps B-UQ-1263001-03A/B. The pump flow rate shall be based on a maximum dosage rate.

6.4.4 SCALE INHIBITOR FOR INJECTION WATER

Scale inhibitor injection is required to prevent scaling in the injection water system, mainly during Sulphate Removal Unit (SRU) by-pass. Scale inhibitor shall be provided to be injected continuously upstream the Ultrafiltration Unit (UFU). This product shall be different from the one inject into the oil/produces water plant.

Injection Fluid Basis: SRU entrance flowrate.

Injection water scale inhibitor will be pumped to the above cited injection point by injection pumps B-UQ-1263001-04A/B. The pump flow rate shall be based on a maximum dosage rate.

7 CHEMICAL INJECTION PUMPS

7.1 DESIGN PARAMETERS

The Chemical Injection Pumps shall include pumps, respective drivers, suction strainers, discharge filters, pressure safety valves, process piping, pressure indicators, calibration pots, pulsation suppression devices and manual valves.

The injection unit shall use individual pumps or multi-head pumps.

For each pump, the respective operation range shall take into account the minimum flow rate of 1 (one) injection point up to the maximum flow rate of all injection points (considering simultaneous operation of all points, unless a different criteria is indicated for any injection point).

	TECHNICAL SPECIFICATION	I-ET-3010.2D-1260-940	-P4X-001	REV.	С
BR	MARLIM LESTE E SUL				32
PETROBRAS	TITLE:	INICATION	ESU	ΙP	
	CHEMICAL	CHEMICAL INJECTION			

Metering pump type shall be double diaphragm. Hazardous materials shall require the use of double diaphragm pump design with leak detection between diaphragms.

The Chemical Injection Pumps shall be protected with all necessary instruments to operate safely, adequately and without interruption. Process design includes piping and instruments within battery limits.

Each pump shall have a stand-by one to all chemicals to guarantee continuous performance.

Flow control shall be automatic and shall include a remote control system that shall be done from platform PLC. All additional control instruments and devices, such as PLCs, shall be provided by Seller.

Each pump shall receive an automatic shutdown signal in case there is a shutdown in the system or equipment receiving the chemical injection. The exceptions are the oxygen scavenger pumps (B-UQ-1263001-01A/B), which shall have SDVs located on each injection line – these SDVs will receive the automatic shutdown signal instead of the pumps.

Instruments and its accessories (e.g., flushing ring, manifolds, pipings, strainers, pulsation dampers, calibration pot, standpipes, block and instrument valves including PSV's) shall be included at Manufacturer's scope of supply.

FIT with FAL and FAH shall be installed at all the topsides and subsea chemical injection lines. Signals, including chemical products' density, shall be available at Central Control Room (CCR). Flow meter shall be Coriolis type.

PITs with PSL/PSH/PSLL/PSHH and their respective alarms shall be installed at all the subsea chemical injection lines. The PSHH action shall stop the related pump that is in operation and the set point pressure is to be defined later by Buyer's subsea team according to subsea lines maximum allowable working pressure (MAWP). The PSLL shall stop the related pump that is in operation and the set point pressure is to be defined later by Buyer's subsea team considering the liquid column in subsea pipes. Signals shall be available at Central Control Room (CCR).

PITs with PSL/PSH/PSLL/PSHH and their respective alarms shall be installed at all the other chemical injection lines. The PSHH and PSLL action shall stop the related pump that is in operation and the set point pressure shall be defined during Detailed Design. Signals shall be available at Central Control Room (CCR).

The spec of the piping included in the scope of supply shall be compatible with the pressure spec of piping from outside the scope of supply, otherwise overpressure protection devices (e.g., Pressure Safety Valves, Pressure Control Valves) shall be foreseen inside scope of Manufacturer's scope of supply.

	TECHNICAL SPECIFICATION	I-ET-3010.2D-1260-940	-P4X-001	REV.	С
BR	AREA: MARLIM LE	STE E SUL	SHEET: 16	of	32
PETROBRAS	TITLE:	INTECTION	ESU	ΙP	
	CHEMICAL INJECTION		INTER	NAL	

The Chemical Injection units shall prioritize the use of tubing for the injection lines.

Pump heads sequence shall be defined by manufacturer to minimize the momentum of pump and P&ID shall be comply with defined sequence.

A check valve shall be provided for each injection point (associated with each pump head). The check valve shall be dissimilar to check valve represented in P&IDs, close to CIP and process line.

7.2 ASSUMPTIONS FOR CALCULATIONS OF CHEMICAL INJECTION PUMPS PERFORMANCE:

- 7.2.1 Adopted pressure at suction flange= 101.3 kPa abs. Shall be confirmed during Detailed Design.
- 7.2.2 Pump efficiency: minimum of 70%, it shall be confirmed by Pumps Vendor.
- 7.2.3 Flow for calculation = maximum dosage.
- 7.2.4 The discharge pressure and design pressure of pump or pump head shall take into account the design pressure of the system where the product is to be injected.
- 7.2.5 The following values and criteria may be considered for pressure drop in accidents; these had been used in the presented estimative in this document:
 - Filter = 49 kPa
 - Flow meter = 49 kPa
 - Control valve = 69 kPa
 - Dynamic mixer = 108 kPa
 - Static mixer = 10 kPa
 - Injection device:
 - Quill type considered as a percentage of 100% of the pressure drop in the line.
 - Open type considered as a percentage of 100% of the pressure drop in the line.
 - Spray type = 681 kPa.

7.2.6 At static height between pumps and injection points:

- When the pump has more than one injection head, the power of the drive shaft shall be considered as the sum of the powers of each head.
- Design Pressure (or fixed pressure from the relief valve in the pump discharge line) = Rated Pressure + Back Pressure. For discharge pressure up to 9,807 kPa-a, a minimum of 20% back pressure shall be used and, for discharge pressure above 9,807 kPa-a, a minimum of 10% back pressure shall be used. If the calculated design pressure is less than the pressure design at the injection point, this shall be adopted.
- Preliminary calculation of the Pump's Hydraulic Power (or per pump head) the power on the pump shaft is calculated according to Equations (1) and (2) below and the values represent a preliminary assessment, the final values shall be defined by the supplier of the chemical units:

$$Ph = 2.724069 \times Q \times \frac{(Pd - Ps)}{(100 \times 98.0665)}$$
 (1)

	TECHNICAL SPECIFICATION	I-ET-3010.2D-1260-940	-P4X-001	IXLV.	С
<i>B</i> R	AREA: MARLIM LESTE E SUL			of	32
PETROBRAS	TITLE:	ESUP			
	CHEMICAL	INJECTION	INTER	NAL	

 $P = \frac{(Ph)}{e} \tag{2}$

Where:

P = Power on the shaft, bkW.

Ph = Power, kW.

Q = Volumetric Flow, m³/h.

Pd = Discharge Pressure, kPa-a.

Ps = Suction Pressure, kPa-a.

e = Estimated efficiency.

The following Table 6, Table 7 and Table 8 below present preliminary estimative for pumps power and chemical flowrates for each injection point. It was based on preliminary piping arrangement and shall be confirmed/updated during Detailed Design.

	TECHNICAL SPECIFICATION I-ET-3010.2D-1260-94				С
BR					
PETROBRAS	TITLE:	ESU			
	CHEMICAL	MICAL INJECTION		NAL	

7.3 CHEMICAL INJECTION PUMPS FOR OIL AND GAS

The following pumps shall be designed to be mutually interchangeable, with each equipment being able to perform any of the services required by each one of the other pumps:

- B-UQ-1261001-01A/C, B-UQ-1261001-02A/C and B-UQ-1261001-05A/C;
- B-UQ-1261001-06A/N, B-UQ-1261001-07A/N and B-UQ-1261001-08A/N.

Table 6 – Chemical Injection Pumps for Oil and Gas.

	Pump load sharing/sparing	Head	Chemical product	Injection points	Cap. / head	pre	ion point	Power	Design pressure (selected)	Operat. Temp. °C	Design Temp.	Capacity per pump
		1A		Production manifolds (Train A) downstream	(L/h) 199	1000	(kgf/cm²a) 10.2	(bkW) 0.1	(kPa-g) 2226	14-37	60	L/h
				liquid sample point Upstream high pressure separator level control			- '					
		2A		valve (train A)	199	960	9,8	0,2	2511	14-37	60	
		3A		Test manifold downstream liquid sample point	84	1000	10,2	0,1	2940	14-37	60	
B-UQ-1261001-01A/C	3 X 50%	4A	Defoamer	Upstream test separator level control valve Production manifolds (Train B) downstream	84	960	9,8	0,1	2446	14-37	60	566
		1B		liquid sample point	199	1000	10,2	0,1	2226	14-37	60	
		2B		Upstream high pressure separator level control valve (train B)	199	960	9,8	0,2	2511	14-37	60	
		3B		Test manifold downstream liquid sample point	84	1000	10,2	0,1	2940	14-37	60	
		4B		Upstream test separator level control valve	84	960	9,8	0,1	2446	14-37	60	
		1A		Production manifolds (Train A) downstream liquid sample point	100	1000	10,2	0,1	1904	14-37	60	
		2A		Test manifold downstream liquid sample point	42	1000	10,2	0,0	1904	14-37	60	
		3A 4A		Upstream pre-oil dehydrator (Train A)	59 52	1420 1350	14,5 13,8	0,1	2588 2146	14-37 14-37	60 60	
B-UQ-1261001-02A/C	3 X 50%	1B	Demulsifier	Upstream oil dehydrator mixing valve (Train A) Production manifolds (Train B) downstream	100	1000	10.2	0,0	1904	14-37	60	253
				liquid sample point			- '					
		2B 3B		Test manifold downstream liquid sample point Upstream pre-oil dehydrator (Train B)	42 59	1000 1420	10,2 14.5	0,0	1904 2588	14-37 14-37	60 60	
		4B		Upstream oil dehydrator mixing valve (Train B)	52	1350	13,8	0,0	2146	14-37	60	
		1A		Downstream Oil Cooler (P-1223005A/D) - Train	93	980	10,0	0,0	1610	14-37	60	
				A Downstream Oil Cooler (P-1223005A/D) - Train								
B-UQ-1261001-03A/B	2 X 100%	2A	H2S Scavenger - topside	B	93	980	10,0	0,0	1610	14-37	60	1812
		3A		TQ-1223502 (Off-Spec Oil Tank)	93	101	1,0	0,0	537	14-37	60	
		4A 5A		TQ-5331501A/C (Produced Water Tanks) Transfer header (HULL)	93 1440	101	1,0 1.0	0,0	1117 1456	14-37 14-37	60 60	
		1A		Production manifold (Train A)	1103	1000	10,2	0,8	2182	14-37	60	
	l	2A		Upstream Settling Tanks - Tanks A or C	1103	1420	14,5	0,9	2588	14-37	60	
B-UQ-1261001-04A/B	2 X 100%	3A 4A	Acetic Acid (75%)	Test manifold Production manifold (Train B)	528 1103	1000	10,2 10,2	0,3	1767 2182	14-37 14-37	60 60	2734
		5A		Upstream Settling Tanks - Tanks B or C	1103	1420	10,2	0,8	2182 2588	14-37	60	
	1	1A		Production manifolds (Train A) downstream	166	1000	10.2	0,3	2052	14-37	60	
				liquid sample point			- 7					
		2A		Test manifold downstream liquid sample point Downstream Settling Tanks oil pumps (upstream	80	1000	10,2	0,1	2244	14-37	60	
		3A		P-1223002A/D) - Train A	166	1720	17,5	0,2	3100	14-37	60	
B-UQ-1261001-05A/C	3 X 50%	4A	Scale inhibitor - topside	Upstream oil dehydrator mixing valve (Train A)	166	1420	14,5	0,1	2669	14-37	60	578
		1B		Production manifolds (Train B) downstream	166	1000	10,2	0,1	2052	14-37	60	
		2B		liquid sample point Test manifold downstream liquid sample point	80	1000	10,2	0.1	2244	14-37	60	
		3B		Downstream Settling Tanks oil pumps (upstream	166	1720	17,5	0,2	2912	14-37	60	
		4B		P-1223002A/D) - Train B					2910			
		46	Defoamer - subsea	Upstream oil dehydrator mixing valve (Train B) Wet Christmas Tree / inside the wells	166 60	1420 20000	14,5 203,9	0,2	21969	14-37 14-37	60 60	
			H2S Scavenger - subsea	Wet Christmas Tree / inside the wells	60	20000	203,9	0,5	21880	14-37	60	
B-UQ-1261001-06A/N	13 X 9%	1 - 43	Scale inhibitor - subsea	Wet Christmas Tree / inside the wells	60	20000	203,9	0,5	21878	14-37	60	240
D 04 1201001 00/014	107.0%		Asphaltene inhibitor - subsea Wax inhibitor - subsea	Wet Christmas Tree / inside the wells Wet Christmas Tree / inside the wells	60	20000	203,9 203.9	0,5	21943 21962	14-37 14-37	60 60	2.10
			Demulsifier - subsea	Wet Christmas Tree / inside the wells Wet Christmas Tree / inside the wells	50	20000	203,9	0,3	21943	14-37	60	
B-UQ-1261001-07A/N	13 x 9%	1 - 43	H2S Scavenger - subsea	Wet Christmas Tree / inside the wells	60	20000	203,9	0,5	21880	14-37	60	240
B-UQ-1261001-08A/N	13 X 9%	1 - 43	Scale inhibitor - subsea	Wet Christmas Tree / inside the wells	30	20000	203,9	0,2	22289	14-37	60	160
		1A 1A	Hydrate inhibitor (Ethanol) Hydrate inhibitor (MEG)	Wet Christmas Tree Wet Christmas Tree	1250 1250	20000	203,9 203,9	10,1	22317 22235	14-37 14-37	60 60	1250 1250
B-UQ-1261001-10A/D	4 X 25%	1A	Hydrate inhibitor (Ethanol)	Wet Christmas Tree	1250	20000	203,9	10,1	22317	14-37	60	1250
		1A	Hydrate inhibitor (MEG)	Wet Christmas Tree	1250	20000	203,9	10,0	22235	14-37	60	1250
		1A		Condensate line from Fuel Gas K.O. Drum (V- 5135001)	1	4930	50,3	0,0	6217	14-37		
											60	
B-UQ-1261001-11A/B	2 X 100%		Corrosion inhibitor									4
B-UQ-1261001-11A/B	2 X 100%	2A	Corrosion inhibitor	Fuel Gas K.O. Drum (V-5135001) inlet line, upstream the fuel gas pressure control valve	1	5025	51,2	0,0	6331	14-37	60	4
B-UQ-1261001-11A/B	2 X 100%		Corrosion inhibitor	Fuel Gas K.O. Drum (V-5135001) inlet line, upstream the fuel gas pressure control valve Export Header		5025 20000	51,2 203,9	0,0	6331 22401	14-37 14-37		4
B-UQ-1261001-11A/B	2 X 100% 4 X 50%	2A	Corrosion inhibitor Hydrate inhibitor (Ethanol)	Fuel Gas K.O. Drum (V-5135001) inlet line, upstream the fuel gas pressure control valve	1						60	4
B-UQ-1261001-11A/B		2A 3A		Fuel Gas K.O. Drum (V-5135001) inlet line, upstream the fuel gas pressure control valve Export Header Condensate line from coalescer filter (FT- 1233001/AB) upstream TEG Contactor (superior chamber) Condensate line from coalescer filter (FT- 1233001/AB) upstream TEG Contactor (inferior	1 2	20000	203,9	0,0	22401	14-37	60 60	4
B-UQ-1261001-11A/B	4 X 50%	2A 3A 1A	Hydrate inhibitor (Ethanol)	Fuel Gas K.O. Drum (V-5135001) intel line, upstream the fuel gas pressure control valve Export Header Condensate line from coalescer filter (FT- 1233001/RP) upstream TEG Contactor (superior chamber) Condensate line from coalescer filter (FT-	1 2 1	20000 5235	203,9 53,4	0,0	22401 6692	14-37 14-37	60 60 60	4
B-UQ-1261001-11A/B	4 X 50% 4 X 50% 4 X 50%	2A 3A 1A 2A 3A	Hydrate inhibitor (Ethanol) Hydrate inhibitor (Ethanol) Hydrate inhibitor (Ethanol)	Fuel Cas K.O. Drum (V-5135001) inlet line, upstream the fuel gas pressure control valve Export Header Condensate line from coalescer filter (FT- 1233001/AB) upstream TEG Contactor (superior chamber) Condensate line from coalescer filter (FT- 1233001/AB) upstream TEG Contactor (inferior chamber) Condensate line from V-1233001) upstream	1 1 1	5235 5235 5200	203,9 53,4 53,4 53,0	0,0	22401 6692 6692 6654	14-37 14-37 14-37	60 60 60	4
	4 X 50% 4 X 50% 4 X 50% 4 X 50%	2A 3A 1A 2A 3A 4A	Hydrate inhibitor (Ethanol) Hydrate inhibitor (Ethanol) Hydrate inhibitor (Ethanol) Hydrate inhibitor (Ethanol)	Fuel Cas K.O. Drum (V-5135001) inlet line, usstream the fuel gas pressure control valve Export Header Condensate line from coalescer filter (FT- 123001/kB) upstream TEG Contactor (superior chamber) Condensate line from coalescer filter (FT- 1233001/kB) upstream TEG Contactor (inferior chamber) Condensate line from V-1233001) upstream TEG Contactor Condensate line from TEG Contactor drum (V-T- 1233001)	1 1 1 1	20000 5235 5235 5200 5200	203,9 53,4 53,4 53,0 53,0	0,0 0,0 0,0 0,0	22401 6692 6692 6654	14-37 14-37 14-37 14-37	60 60 60 60 60	4
	4 X 50% 4 X 50% 4 X 50% 4 X 50% 4 X 50% 4 X 50%	2A 3A 1A 2A 3A 4A	Hydrate inhibitor (Ethanol)	Fuel Cas K.O. Drum (V-5133001) inlet line, upstream the luel gas pressure control valve Export Header Condensate line from coalescer filter (FT- 1233001A/B) upstream TEG Contactor (superior chamber) Condensate line from coalescer filter (FT- 1233001A/B) upstream TEG Contactor (inferior chamber) Condensate line from V-1233001) upstream TEG Contactor Condensate line from TEG Contactor drum (V-T- 1233001) Upstream FV-1233004	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5235 5235 5200 5200 5185	203,9 53,4 53,4 53,0 53,0 52,9	0,0 0,0 0,0 0,0 0,0	22401 6692 6692 6654 6654 6637	14-37 14-37 14-37 14-37 14-37 14-37	60 60 60 60 60 60	4
	4 X 50% 4 X 50% 4 X 50% 4 X 50%	2A 3A 1A 2A 3A 4A	Hydrate inhibitor (Ethanol) Hydrate inhibitor (Ethanol) Hydrate inhibitor (Ethanol) Hydrate inhibitor (Ethanol)	Fuel Cas K.O. Drum (V-5135001) inlet line, usstream the fuel gas pressure control valve Export Header Condensate line from coalescer filter (FT- 123001/kB) upstream TEG Contactor (superior chamber) Condensate line from coalescer filter (FT- 1233001/kB) upstream TEG Contactor (inferior chamber) Condensate line from V-1233001) upstream TEG Contactor Condensate line from TEG Contactor drum (V-T- 1233001)	1 1 1 1	20000 5235 5235 5200 5200	203,9 53,4 53,4 53,0 53,0	0,0 0,0 0,0 0,0	22401 6692 6692 6654	14-37 14-37 14-37 14-37	60 60 60 60 60	4
	4 X 50% 4 X 50% 4 X 50% 4 X 50% 4 X 50% 4 X 50%	2A 3A 1A 2A 3A 4A	Hydrate inhibitor (Ethanol)	Fuel Cas K.O. Drum (V-5133001) inlet line, upstream the luel gas pressure control valve Export Header Condensate line from coalescer filter (FT- 1233001A/B) upstream TEG Contactor (superior chamber) Condensate line from coalescer filter (FT- 1233001A/B) upstream TEG Contactor (inferior chamber) Condensate line from V-1233001) upstream TEG Contactor Condensate line from TEG Contactor drum (V-T- 1233001) Upstream FV-1233004 Condensate line from Amine Inlet Gas K.O. Drum (V-12350011) Condensate line from coalescer filter (FT- 12350014) upstream Amine Condactor	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5235 5235 5200 5200 5185	203,9 53,4 53,4 53,0 53,0 52,9	0,0 0,0 0,0 0,0 0,0	22401 6692 6692 6654 6654 6637	14-37 14-37 14-37 14-37 14-37 14-37	60 60 60 60 60 60	4
	4 X 50% 4 X 50% 4 X 50% 4 X 50% 4 X 50% 4 X 50% 4 X 50%	2A 3A 1A 2A 3A 4A 1B 2B	Hydrate inhibitor (Ethanol)	Fuel Cas K.O. Drum (V-5135001) inlet line, usstream the fuel gas pressure control valve Export Header Condensate line from coalescer filter (FT- 123001A/B) upstream TEG Contactor (superior chamber) Condensate line from coalescer filter (FT- 123001A/B) upstream TEG Contactor (inferior chamber) Condensate line from V-1233001) upstream TEG Contactor Condensate line from TEG Cortactor drum (V-T- 1233001) Upstream FV-1233004 Condensate line from Amine Inlet Gas K.O. Drum (V-1255001) Condensate line from Coalescer filter (FT-	1 2 1 1 1 1 1 23	5235 5235 5200 5200 5185 5510	203,9 53,4 53,4 53,0 53,0 52,9 56,2	0,0 0,0 0,0 0,0 0,0 0,0 0,1	22401 6692 6692 6694 6654 6637 6995	14-37 14-37 14-37 14-37 14-37 14-37	60 60 60 60 60 60 60	4
	4 X 50% 4 X 50%	2A 3A 1A 2A 3A 4A 1B 2B 3B	Hydrate inhibitor (Ethanol)	Fuel Cas K.O. Drum (V-5135001) inlet line, usstream the bud gas pressure control valve Export Header Condensate line from coalescer filter (FT-1230014/B) upstream TEG Contactor (superior chamber) Condensate line from coalescer filter (FT-1230014/B) upstream TEG Contactor (interior chamber) Condensate line from Coalescer filter (FT-1230014/B) upstream TEG Contactor (interior chamber) Condensate line from TEG Contactor drum (V-T-1230014) Upstream FV-1233004 Condensate line from Amine Intet Gas K.O. Drum (V-12350011) Condensate line from coalescer filter (FT-12350014/B) upstream Amine Contactor (superior chamber) Condensate line from coalescer filter (FT-12350014) Condensate line from coalescer filter (FT-1250014/B) upstream Amine Contactor (uniferior chamber) Condensate line from coalescer filter (FT-1250014/B) upstream Amine Contactor (uniferior chamber)	1 2 1 1 1 1 1 23 2 2	5235 5235 5200 5200 5185 5510 5510	203,9 53,4 53,4 53,0 53,0 52,9 56,2 56,2	0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0	22401 6692 6692 6654 6654 6637 6995	14-37 14-37 14-37 14-37 14-37 14-37 14-37	60 60 60 60 60 60 60 60	4
	4 × 50% 4 × 50%	2A 3A 1A 2A 3A 4A 1B 2B 3B 4B	Hydrate inhibitor (Ethanol)	Fuel Cas K.O. Drum (V-S138001) inlet line, upstream the luel gas pressure control valve Export Header Condensate line from coalescer filter (FT- 1233001A/B) upstream TEG Contactor (superior chamber) Condensate line from coalescer filter (FT- 1233001A/B) upstream TEG Contactor (inferior chamber) Condensate line from V-1233001) upstream TEG Contactor Condensate line from TEG Cortactor drum (V-T- 1233001) Upstream FV-1233004 Condensate line from Amine Inlet Gas K.O. Drum (V-12350014) Condensate line from coalescer filter (FT- 1235001A/B) upstream Amine Contactor (superior chamber) Condensate line from coalescer filter (FT- 1235001A/B) upstream Amine Contactor (superior chamber) Condensate line from coalescer filter (FT- 1233001A/B) upstream Amine Contactor (inferior chamber) Condensate line from coalescer filter (FT- 1233001A/B) upstream TEG Contactor (superior chamber) Condensate line from coalescer filter (FT- 1233001A/B) upstream TEG Contactor (superior chamber)	1 2 1 1 1 1 1 23 2 2 2 1 1	5235 5235 5200 5200 5185 5510 5510 5535	203,9 53,4 53,4 53,0 53,0 52,9 56,2 56,2 56,2	0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	22401 6692 6692 6654 6654 6637 6995 6995	14-37 14-37 14-37 14-37 14-37 14-37 14-37 14-37	60 60 60 60 60 60 60 60 60	
	4 × 50% 4 × 50%	2A 3A 1A 2A 3A 4A 1B 2B 3B 4C 1C 2C	Hydrate inhibitor (Ethanol)	Fuel Cas K.O. Drum (V-5138001) inlet line, usstream the bud gas pressure control valve Export Header Condensate line from coalescer filter (FT-1230014/B) upstream TEG Contactor (superior chamber) Condensate line from coalescer filter (FT-1230014/B) upstream TEG Contactor (inferior chamber) Condensate line from coalescer filter (FT-1230014/B) upstream TEG Contactor (inferior chamber) Les Condensate line from TEG Contactor drum (V-T-1230014/B) upstream TEG Contactor drum (V-T-1230014/B) upstream TEG Contactor (Inferior Condensate line from Callescer filter (FT-12350014/B) upstream Arnine Contactor (uperior chamber) Condensate line from coalescer filter (FT-12350014/B) upstream Arnine Contactor (unferior chamber) Condensate line from coalescer filter (FT-1230014/B) upstream Arnine Contactor (unferior chamber) Condensate line from coalescer filter (FT-1230014/B) upstream TEG Contactor (unferior chamber) Condensate line from coalescer filter (FT-12330014/B) upstream TEG Contactor (inferior chamber) Condensate line from coalescer filter (FT-12330014/B) upstream TEG Contactor (inferior chamber) Condensate line from Coalescer filter (FT-12330014/B) upstream TEG Contactor (inferior chamber)	1 2 1 1 1 1 1 1 23 2 2 2	5235 5235 5200 5200 5185 5510 5510 5510 5235	203,9 53,4 53,4 53,0 53,0 52,9 56,2 56,2 56,2 56,2	0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	22401 6692 6692 6694 6654 6654 6637 6995 6995	14-37 14-37 14-37 14-37 14-37 14-37 14-37 14-37	60 60 60 60 60 60 60 60 60	
	4 × 50% 4 × 50%	2A 3A 1A 2A 3A 4A 1B 2B 3B 4C 1C 2C 3C	Hydrate inhibitor (Ethanol)	Fuel Cas K.O. Drum (V-S133001) intel line, upstream the fuel gas pressure control valve Export Header Condensate line from coalescer filter (FT-123001A/B) upstream TEG Contactor (isuperior chamber) Condensate line from coalescer filter (FT-123001A/B) upstream TEG Contactor (inferior chamber) Condensate line from coalescer filter (FT-1233001A/B) upstream TEG Contactor (inferior chamber) Condensate line from V-1233001) upstream TEG Contactor drum (V-T-1233001) Upstream FV-1233004 Condensate line from TEG Contactor drum (V-T-1233001A/B) upstream Amine Contactor (superior chamber) Condensate line from coalescer filter (FT-1235001A/B) upstream Amine Contactor (inferior chamber) Condensate line from coalescer filter (FT-123001A/B) upstream Amine Contactor (inferior chamber) Condensate line from coalescer filter (FT-123001A/B) upstream TEG Contactor (superior chamber) Condensate line from coalescer filter (FT-123001A/B) upstream TEG Contactor (inferior chamber) Condensate line from Coalescer filter (FT-123001A/B) upstream TEG Contactor (inferior chamber) Condensate line from V-12330011) upstream TEG Contactor (inferior chamber)	1 2 1 1 1 1 23 2 2 2 1 1 1 1	20000 5235 5235 5200 5200 5185 5510 5510 5235 5235 5235	203,9 53,4 53,4 53,0 53,0 52,9 56,2 56,2 56,2 53,4 53,4	0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0	22401 6692 6692 6654 6654 6637 6995 6995	14-37 14-37 14-37 14-37 14-37 14-37 14-37 14-37	60 60 60 60 60 60 60 60 60 60	
	4 × 50% 4 × 50%	2A 3A 1A 2A 3A 4A 1B 2B 3B 4C 1C 2C	Hydrate inhibitor (Ethanol)	Fuel Cas K.O. Drum (V-5138001) inlet line, usstream the bud gas pressure control valve Export Header Condensate line from coalescer filter (FT-1230014/B) upstream TEG Contactor (superior chamber) Condensate line from coalescer filter (FT-1230014/B) upstream TEG Contactor (inferior chamber) Condensate line from coalescer filter (FT-1230014/B) upstream TEG Contactor (inferior chamber) Les Condensate line from TEG Contactor drum (V-T-1230014/B) upstream TEG Contactor drum (V-T-1230014/B) upstream TEG Contactor (Inferior Condensate line from Callescer filter (FT-12350014/B) upstream Arnine Contactor (uperior chamber) Condensate line from coalescer filter (FT-12350014/B) upstream Arnine Contactor (unferior chamber) Condensate line from coalescer filter (FT-1230014/B) upstream Arnine Contactor (unferior chamber) Condensate line from coalescer filter (FT-1230014/B) upstream TEG Contactor (unferior chamber) Condensate line from coalescer filter (FT-12330014/B) upstream TEG Contactor (inferior chamber) Condensate line from coalescer filter (FT-12330014/B) upstream TEG Contactor (inferior chamber) Condensate line from Coalescer filter (FT-12330014/B) upstream TEG Contactor (inferior chamber)	1 2 1 1 1 1 23 2 2 2 1 1 1 1	5235 5235 5200 5200 5185 5510 5510 5510 5235	203,9 53,4 53,4 53,0 53,0 52,9 56,2 56,2 56,2 56,2	0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	22401 6692 6692 6694 6654 6654 6637 6995 6995	14-37 14-37 14-37 14-37 14-37 14-37 14-37 14-37	60 60 60 60 60 60 60 60 60	
B-UQ-1261001-13A/D	4 × 50% 4 × 50%	2A 3A 1A 2A 3A 4A 1B 2B 3B 4C 1C 2C 3C	Hydrate inhibitor (Ethanol) Hydrate inhibitor (MEG) Hydrate inhibitor (MEG)	Fuel Cas K.O. Drum (V-5138001) inlet line, usstream the bud gas pressure control valve Export Header Condensate line from coalescer filter (FT-1230014/B) upstream TEG Contactor (superior chamber) Condensate line from coalescer filter (FT-1230014/B) upstream TEG Contactor (inferior chamber) Condensate line from coalescer filter (FT-12380014/B) upstream TEG Contactor (inferior chamber) Condensate line from V-1233001) upstream TEG Contactor from TEG Contactor drum (V-T-123001) Upstream FV-1233004 Condensate line from Amine Intet Gas K.O. Drum (V-125801) Condensate line from coalescer filter (FT-12350014/B) upstream Amine Contactor (superior chamber) Condensate line from coalescer filter (FT-12350014/B) upstream Amine Contactor (superior chamber) Condensate line from coalescer filter (FT-12330014/B) upstream TEG Contactor (superior chamber) Condensate line from coalescer filter (FT-12330014/B) upstream TEG Contactor (inferior chamber) Condensate line from coalescer filter (FT-12330014/B) upstream TEG Contactor (inferior chamber) Condensate line from V-12330011) upstream TEG Condactor (inferior chamber) Condensate line from TEG Contactor (inferior chamber) Condensate line from TEG Contactor (inferior chamber) Condensate line from TEG Contactor (inferior chamber) Lypstream FV-1233004	1 2 1 1 1 1 23 2 2 2 1 1 1 1	20000 5235 5235 5200 5200 5185 5510 5510 5235 5235 5235	203,9 53,4 53,4 53,0 53,0 52,9 56,2 56,2 56,2 53,4 53,4	0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0	22401 6692 6692 6694 6654 6654 6637 6995 6995 6996	14-37 14-37 14-37 14-37 14-37 14-37 14-37 14-37	60 60 60 60 60 60 60 60 60 60	
3-UQ-1261001-13A/D	4 × 50% 4 × 50% 5 × 50% 6 ×	2A 3A 1A 2A 3A 4A 1B 2B 3B 4C 1C 4C 4C	Hydrate inhibitor (Ethanol) Hydrate inhibitor (MEG) Hydrate inhibitor (MEG) Hydrate inhibitor (MEG)	Fuel Cas K.O. Drum (V-5133001) intel line, upstream the fuel gas pressure control valve Export Header Condensate line from coalescer filter (FT-12330014/B) upstream TEG Contactor (superior chamber) Condensate line from coalescer filter (FT-12330014/B) upstream TEG Contactor (inferior chamber) Condensate line from coalescer filter (FT-12330014/B) upstream TEG Contactor (inferior chamber) Condensate line from V-1233001) upstream TEG Contactor drum (V-T-1233001) Upstream FV-1233004 Condensate line from TEG Contactor drum (V-T-1233001A) Upstream FV-1233004 Condensate line from coalescer filter (FT-1235001A)B) upstream Amine Contactor (superior chamber) Condensate line from coalescer filter (FT-1235001A)B) upstream Amine Contactor (inferior chamber) Condensate line from coalescer filter (FT-1233001AB) upstream TEG Contactor (superior chamber) Condensate line from coalescer filter (FT-1233001AB) upstream TEG Contactor (inferior chamber) Condensate line from Coalescer filter (FT-1233001AB) upstream TEG Contactor (inferior Chamber) Condensate line from TEG Contactor (inferior Chamber) Condensate line from TEG Contactor (fureiror Condensate line from TEG Contactor (fureiro	1 2 1 1 1 23 2 2 1 1 1 1 1 1 1 1	20000 5235 5235 5200 5200 5185 5510 5510 5235 5235 5200 5200 5235 5200	203,9 53,4 53,4 53,0 53,0 52,9 56,2 56,2 56,2 53,4 53,0	0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0	22401 6692 6692 6654 6654 6655 6695 6995 6995 6645 6645	14-37 14-37 14-37 14-37 14-37 14-37 14-37 14-37 14-37 14-37	60 60 60 60 60 60 60 60 60 60	
B-UQ-1261001-13A/D	4 × 50% 4 × 50%	2A 3A 1A 2A 3A 4A 1B 2B 3B 4C 1C 2C 3C 4C 1D	Hydrate inhibitor (Ethanol) Hydrate inhibitor (MEG)	Fuel Cas K.O. Drum (V-5138001) intel line, usstream the bud gas pressure control valve Export Header Condensate line from coalescer filter (FT-1230014/B) upstream TEG Contactor (superior chamber) Condensate line from coalescer filter (FT-1230014/B) upstream TEG Contactor (inferior chamber) Condensate line from coalescer filter (FT-1230014/B) upstream TEG Contactor (inferior chamber) Condensate line from V-1233001) upstream TEG Contactor drum (V-T-123001) Upstream FV-1233004 Condensate line from Amine Intel Gas K.O. Drum (V-125601) Condensate line from coalescer filter (FT-123501A/B) upstream Amine Contactor (superior chamber) Condensate line from coalescer filter (FT-123501A/B) upstream Amine Contactor (superior chamber) Condensate line from coalescer filter (FT-123001A/B) upstream TEG Contactor (inferior chamber) Condensate line from coalescer filter (FT-1233001A/B) upstream TEG Contactor (inferior chamber) Condensate line from Coalescer filter (FT-1233001A/B) upstream TEG Contactor (inferior chamber) Condensate line from TEG Contactor (inferior chamber) Condensate line from TEG Contactor (inferior chamber) Condensate line from TEG Contactor (inferior chamber) Upstream FV-1233004 Condensate line from Calescer filter (FT-123001A/B) upstream TEG Contactor (inferior chamber) Upstream FV-1233004	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20000 5235 5235 5200 5200 5185 5510 5510 5235 5235 5200 5200 5235 5200 5235	203,9 53,4 53,0 53,0 52,9 56,2 56,2 56,2 53,4 53,0 53,0 53,0 53,0	0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0	22401 6692 6692 6654 6654 6657 6995 6995 6695 6645 6645 6606 6606	14-37 14-37 14-37 14-37 14-37 14-37 14-37 14-37 14-37 14-37	60 60 60 60 60 60 60 60 60 60 60	
B-UQ-1261001-13A/D	4 X 50%	2A 3A 1A 2A 3A 4A 4A 1B 2B 3B 1C 2C 3C 4C 1D 2D 3D	Hydrate inhibitor (Ethanol) Hydrate inhibitor (MEG)	Fuel Cas K.O. Drum (V-5138001) intel line, usstream the bud gas pressure control valve Export Header Condensate line from coalescer filter (FT-1230014/B) upstream TEG Contactor (superior chamber) Condensate line from coalescer filter (FT-1230014/B) upstream TEG Contactor (superior chamber) Condensate line from Coalescer filter (FT-12380014/B) upstream TEG Contactor (inferior chamber) Condensate line from V-1233001) upstream TEG Contactor form (V-T-1238001) Upstream FV-1233004 Upstream FV-1233004 Condensate line from Canalescer filter (FT-12380014/B) upstream Arnine Contactor (superior chamber) Condensate line from coalescer filter (FT-12390014/B) upstream Arnine Contactor (superior chamber) Condensate line from coalescer filter (FT-12390014/B) upstream TEG Contactor (superior chamber) Condensate line from coalescer filter (FT-12390014/B) upstream TEG Contactor (inferior chamber) Condensate line from coalescer filter (FT-12390014/B) upstream TEG Contactor (inferior chamber) Condensate line from Coalescer filter (FT-1239014/B) upstream TEG Contactor (inferior chamber) Condensate line from Coalescer filter (FT-1239014) upstream TEG Contactor (inferior chamber) Condensate line from Coalescer filter (FT-1239014) upstream TEG Contactor (inferior chamber) Condensate line from Coalescer filter (FT-1239014) upstream TEG Contactor (inferior chamber) Condensate line from Coalescer filter (FT-1239014) upstream TEG Contactor (inferior chamber) Condensate line from Coalescer filter (FT-1239014) upstream TEG Contactor (inferior chamber) Condensate line from Coalescer filter (FT-1239014) upstream TEG Contactor (inferior chamber)	1 2 1 1 1 1 23 2 2 1 1 1 1 1 1 30 2 2	20000 5235 5235 5200 5200 5185 5510 5510 5235 5235 5200 5235 5200 5200 5350	203,9 53,4 53,4 53,0 53,0 52,9 56,2 56,2 56,2 53,4 53,4 53,0 52,9 56,2	0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	22401 6692 6692 6694 6654 6657 6995 6995 6995 6645 6645 6606 6606 6590 6947	14-37 14-37 14-37 14-37 14-37 14-37 14-37 14-37 14-37 14-37 14-37 14-37 14-37	60 60 60 60 60 60 60 60 60 60 60 60	
B-UQ-1261001-13A/D	4 × 50% 4 × 50%	2A 3A 1A 2A 4A 1B 2B 3B 4B 1C 2C 3C 4C 1D 2D	Hydrate inhibitor (Ethanol) Hydrate inhibitor (MEG)	Fuel Cas K.O. Drum (V-S133001) intel line, upstream the fuel gas pressure control valve Export Header Condensate line from coalescer filter (FT-123001A/B) upstream TEG Contactor (superior chamber) Condensate line from coalescer filter (FT-123001A/B) upstream TEG Contactor (inferior chamber) Condensate line from coalescer filter (FT-1233001A/B) upstream TEG Contactor (inferior chamber) Condensate line from V-1233001) upstream TEG Contactor drum (V-T-1233001) Upstream FV-1233004 Condensate line from TEG Contactor drum (V-T-1233001A/B) upstream Amine Contactor (superior chamber) Condensate line from coalescer filter (FT-1235001A/B) upstream Amine Contactor (superior chamber) Condensate line from coalescer filter (FT-123001A/B) upstream Amine Contactor (inferior chamber) Condensate line from coalescer filter (FT-1233001A/B) upstream TEG Contactor (superior chamber) Condensate line from Coalescer filter (FT-1233001A/B) upstream TEG Contactor (inferior chamber) Condensate line from V-1233001) upstream TEG Contactor (inferior chamber) Condensate line from V-1233001) upstream TEG Contactor (inferior Chamber) Condensate line from TEG Contactor (funerior Condensate) line from Amine Inlet Gas K.O. Drum (V-1233001) Upstream FV-1233004) upstream TEG Contactor (inferior Chamber) Condensate line from Coalescer filter (FT-1233001A/B) upstream FV-1233004A/B) upstream F	1 2 1 1 1 1 23 2 2 2 1 1 1 1 1 1 30	20000 5235 5235 5200 5200 5185 5510 5510 5235 5235 5200 5185 5235 5200 5185 5200	203,9 53,4 53,0 53,0 52,9 56,2 56,2 56,2 53,4 53,0 53,0 52,9 56,2	0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	22401 6692 6692 6694 6654 6654 6656 6695 6995 6995 6996 6645 6645	14-37 14-37 14-37 14-37 14-37 14-37 14-37 14-37 14-37 14-37 14-37 14-37	60 60 60 60 60 60 60 60 60 60 60 60	

	TECHNICAL SPECIFICATION	I-ET-3010.2D-1260-940	-P4X-001	REV.	С
<i>BR</i>	AREA: MARLIM LE	SHEET: 19	of	32	
PETROBRAS	TITLE:				
	CHEMICAL INJECTION		INTER	NAL	

7.3.1 CHEMICAL INJECTION VIA UMBILICAL IN WCT OR DOWNHOLE

7.3.1.1 SAMPLING POINTS

A sampling point shall be provided right upstream of the entry into the umbilical head to allow monitoring of the quality of the injected products. The following items shall be followed for each sampling point:

- Located and positioned so as to minimize segregation of product components;
- Preferentially located in vertical sections, with ascending flow. In case it is not possible, points
 with turbulent flow shall be selected to ensure that the product ar properly mixed;
- · Do not use on pipe ends or dead zones;
- Use construction materials compatible with the sampled fluid, to avoid corrosion;
- Provide all sampling points with a blocking valve and two control valves (needle or globe type);
- A gap of at least 20 cm between the sampling point and the drainage point shall be considered.

7.3.1.2 FILTRATION

A stainless-steel filter element filter shall be installed, with 10 microns in the pump discharge.

The filters shall be provided with differential pressure indicators and spare in order to be replaced and cleaned periodically.

	TECHNICAL SPECIFICATION	I-ET-3010.2D-1260-940	-P4X-001	REV.	С
BR	AREA: MARLIM LE	SHEET: 20	of	32	
PETROBRAS	TITLE:	ESUP			
	CHEMICAL INJECTION			NAL	

7.4 CHEMICAL INJECTION PUMPS FOR PRODUCED WATER

Table 7 – Chemical Injection Pumps for Produced Water.

Pump tag	Pump Load Sharing/S	Head	Chemical Product	Injection Point	Cap./head	Injection point pressure	Operat. Temp.	Design Temp.	Design Pressure	Cap. p/ Pump							
	paring				(L/h)	(kPa-a)	°C	°C	(kPa g)	(L/h)							
B-UQ-1262001-01A/B	2 V 4000/	1A	Polyelectrolyte	Inlet line for gas flotation unit (downstream sampling point) - Train A	83	441	14 - 37	60	52184	166							
B-0Q-1262001-01A/B	2 X 100%	1B	(concentrated)	Inlet line for gas flotation unit (downstream sampling point) - Train B	83	441	14 - 37	60	52184	100							
B-UQ-1262001-02A/B	2 V 4000/	1A	Dilution water for	Inlet line for gas flotation unit (downstream sampling point) - Train A	2490	441	14 - 37	60	53172	4980							
B-0Q-1262001-02A/B	3 04 1202001 02.10 2.7 100 7	1B	polyelectrolyte	Inlet line for gas flotation unit (downstream sampling point) - Train B	2490	441	14 - 37	60	53172	4960							
		1A		Settling Tank water outlet - Tanks A or C	42	2,070	14 - 37	60	243858								
			2A		Pre-oil dehydrator (TO-1223001) water outlet - Train A	6	1,393	14 - 37	60	164189							
						-			3A	Scale inhibitor	Oil dehydrator (TO-1223002) water outlet - Train A	3	1,275	14 - 37	60	150303	
									4A		Test separator water outlet	20	981	14 - 37	60	115817	Ī
		5A		Water reinjection header (downstream produced water filter for reinjection)	83	1,176	14 - 37	60	138889								
B-UQ-1262001-03A/C	3 X 50%	1B	В	Settling Tank water outlet - Tanks B or C	42	2,070	14 - 37	60	243858	154							
		2B	2B	2B	Pre-oil dehydrator (TO-1223001) water outlet - Train B	6	1,393	14 - 37	60	164189							
		3B		Oil dehydrator (TO-1223002) water outlet - Train B	3	1,256	14 - 37	60	148067								
		4B	Scale inhibitor 4B	Test separator water outlet	20	981	14 - 37	60	115817								
		5B		Water reinjection header (downstream produced water filter for reinjection)	83	1,196	14 - 37	60	141243								
		1A		TQ-1223502 (Off-spec oil tank)	726	393	14 - 37	60	47027								
B-UQ-1262001-04A/B	2 X 100%	2A	Biocide	Slop tank / Settling Tanks / Produced water tanks	1452	98	14 - 37	60	12312	2905							
D. I.O. 4000004 07-17	0 V 4005′	1A	0	TQ-5331501A/C water outlet, upstream oxygen analyzer - Tank A or C	166	3,011	14 - 37	60	354571	200							
B-UQ-1262001-05A/B	2 X 100% -	2A	Oxygen scavenger up	TQ-5331501A/C water outlet, upstream oxygen analyzer - Tank B or C	166	3,011	14 - 37	60	354571	392							
		3A		TQ-1223502 / TQ-5336501 outlets	60	3,011	14 - 37	60	354571								

	TECHNICAL SPECIFICATION				С
BR	MARLIM LESTE E SUL			1 of	32
PETROBRAS	TITLE:	ESUP			
	CHEMICAL	CHEMICAL INJECTION		ERNAL	

7.5 CHEMICAL INJECTION PUMPS FOR INJECTION WATER

The following pumps shall be designed to be mutually interchangeable, with each equipment being able to perform any of the services required by each one of the other pumps:

B-UQ-1263001-01A/B, B-UQ-1263001-02A/B and B-UQ-1263001-04A/B;

Table 8 – Chemical Injection Pumps for Injection Water.

Pump tag	Pump Load Sharing/ Sparing	Head	Chemical Product	Injection Point	Cap/head	Injection point pressure	Operat. Temp.	Design Temp.	Design pressure	Cap./Pump	
					(L/h)	(kPa-a)	°	°C	(kPa g)	(L/h)	
B-UQ-1263001-01 A/B (Case 1)	2 X 100%	1	Oxygen Scavenger (continuous)	Deaerator vessel	79	200.0	14 - 37	60	465		
B-UQ-1263001-01 A/B (Case 2)	2 X 100%	1	Oxygen Scavenger (shock)	Downstream of the deaerator by-pass line	427	200.0	14 - 37	60	290	427	
B-UQ-1263001-02 A/B	2 X 100%	1	Biodispersant (Continuous)	Downstream of the deaerator by-pass line	40	200.0	14 - 37	60	479	40	
	2 X 100%	1		Upstream deaerator	1988	200.0	14 - 37	60	637		
B-UQ-1263001-03 A/B	2 X 100%	1	Biocide (shock)	Downstream of the deaerator by-pass line	1988	200.0	14 - 37	60	442	1988	
B-UQ-1263001-04 A/B	2 X 100%	1	Scale inhibitor (Continuous)	Upstream ultrafiltration (UT-1251001)	69	491.0	14 - 37	60	595	69	

8 CHEMICAL STORAGE

8.1 DESIGN PARAMETERS

Atmospheric chemical storage tanks shall be provided for all chemical injection pumps of the Injection Water Chemical Injection Unit.

All vent nozzles shall be designed according to API Std 2000 - Venting Atmospheric and Low-Pressure Storage Tanks and NFPA 30 - Flammable and Combustible Liquids Code, including the external fire scenario, whichever it is more restrictive. In the vent design, the reduction factor foreseen in API Std 2000 and NFPA 30 shall not be considered. Vent diameters indicated in ANNEXES 1, 2 and 3 had already been estimated based on these criteria and they shall be confirmed/updated by Packager.

All atmospheric tanks shall be provided with an atmospheric vent, a level gauge and transmitter, an overflow, a dedicated fill connection, and a manway as a minimum.

Vents for flammable products and flame arresters shall be provided in accordance with API Standard 2000.

If different products (that may or may not have the same function) may be stored on the same tank, the design for the tank and the vent shall comply with the most restrictive one.

	TECHNICAL SPECIFICATION I-ET-3010.2D-1260-940				С
BR	AREA: MARLIM LE	SHEET: 22	of	32	
PETROBRAS	TITLE:				

For general specifications and for material specification see I-ET-3010.00-1200-940-P4X-005 - Chemical Injection Points.

A filling station, with individual lines shall be provided to fill up all tanks. Minimum diameter for filling lines shall be 2". Each individual line shall have a 10 mesh net in order to avoid product contamination. Strainers and inlet nozzle shall be provided in all storage tanks.

Connections for nitrogen injection shall be foreseen in each filling line, to allow purging of the tanks.

The storage of hydrate inhibitor shall be consisted of two tanks, both tanks shall be prepared to storage ethanol or MEG (monoethylene glycol).

Detailed design shall provide a rigid piping for each continuous chemical products for make-up of storage tanks of the units UT-1251001, located in module M-11, UD-5122002A/B and UT-1251002, located in module M-15, and Z-UG-5132001-02A/B. It shall be considered the quantity of continuous chemical products defined by each unit's packager. Detailed design shall guarantee that each continuous product flow from M-14 to the respective storage tank in M-11 (UT-1251001), M-15 (UD-5122002A/B and UT-1251002) and M-12 (Z-UG-5132001-02A/B). If necessary, pumps for these services shall be provided, it is part of detailed design scope of supply. In case pump is necessary, the same pump shall not be shared between different chemical products or between different packages, the only exception may be in case of chemical products integration between units (UT-1251001, UT-1251002 and UD-5122002A/B). This integration shall be submitted for Buyer approval.

Drainage system shall be dimensioned to avoid flammable / combustible liquid accumulation under the tanks and in the skid basins, according to requirements in I-RL-3010.2Q-1200-940-P4X-003 - DRAINAGE SYSTEM GUIDELINES.

The location of chemical storage tanks shall consider the compatibility between products. Preliminary information is provided in Annex 9 (Item 12.9). More details will be provided during Detailed Design.

8.2 GENERAL NOTES

- 8.2.1 The bottom of the tanks shall be designed to guarantee full drainage. The tank's bottom shall have a slope between 1:100 and 1:25 (refers to tank width) towards the tank drain outlet. The pump suction outlet shall be on opposite side of drain outlet.
- 8.2.2 Fabrication, assembly and tests shall be in accordance with:

 $\hbox{I-ET-} 3010.00-1200-510-\hbox{P4X-}001-\hbox{Metallic Tanks Design for Topside, where applicable.}$

I-ET-3010.00-1200-540-P4X-002 – Non metallic tanks and pressure vessels design, where applicable.

	TECHNICAL SPECIFICATION	I-ET-3010.2D-1260-940	-P4X-001	REV.	С
BR	AREA: MARLIM LE	SHEET: 23	of	32	
PETROBRAS	TITLE:	ESU			
	CHEMICAL	CHEMICAL INJECTION			

- 8.2.3 The package/manufacturer shall define the type of support more appropriated to each case.
- 8.2.4 The equipment shall be able to operate under the conditions indicated in:
 - I-RL-3010.2Q-1350-960-P4X-002 Motion Analysis.
- 8.2.5 The spec of the piping included in the scope of supply shall be compatible with the pressure spec of piping from outside the scope of supply, otherwise overpressure protection devices (e.g. Pressure Safety Valves, Pressure Control Valves) shall be foreseen inside scope of supply by MANUFACTURER.
- 8.2.6 The liquid outlet nozzle shall be located in order to avoid the acquisition of debris that can be accumulated at the bottom of the tank. MANUFACTURER shall consider minimum height of 150 mm. Internal piping is for sealing purpose. The overflow is below low level inside the tank. The overflow line shall be provided with siphon breaker at its highest point.
- 8.2.7 Packager shall include the chemical product properties (e.g., cloud points) used for storage tank design in the tank data sheet.
- 8.2.8 For further information related to Level Gauge and Transmitters installation requirements regarding nozzle positioning and sizing, refer to I-ET-3010.00-1200-800-P4X-013 GENERAL CRITERIA FOR INSTRUMENTATION PROJECTS and I-ET-3010.2Q-1200-800-P4X-005 FIELD INSTRUMENTATION.
- 8.2.9 A sample connection shall be foreseen in the outlet of each chemical product storage tank.

8.3 DESIGN BASIS

- 8.3.1 The storage of chemical products shall be sufficient for at least 20 days of normal consumption, calculated using the maximum injection rate indicated in the dosage table of Chemicals.
- 8.3.2 Exception for the storage of the following products, which shall have a minimum useful volume of 45 m³:
 - Scale Inhibitor subsea
 - H₂S Scavenger subsea
 - Asphaltene Inhibitor subsea
 - Wax Inhibitor subsea
 - Hydrate Inhibitor (Ethanol / MEG) subsea

	TECHNICAL SPECIFICATION	I-ET-3010.2D-1260-940	-P4X-001	REV.	С
<i>BR</i>	AREA: MARLIM LE	SHEET: 24	of	32	
PETROBRAS	TITLE:				
	CHEMICAL	INJECTION	INTER	RNAL	

- 8.3.3 Tanks shall have a minimum volume of 3 m³.
- 8.3.4 The useful volume shall be the volume contained between the LLSL and LLSH levels of the tanks.
- 8.3.5 For the very low level of all tanks, the value of 150 mm shall be adopted.
- 8.3.6 The dimensions of the tanks are only an estimate and shall be confirmed or revised during Detailed Design.
- 8.3.7 Tanks for flammable products shall have flame arresters.
- 8.3.8 The flow rate for calculating the tank capacity is calculated by adding the injection points with continuous dosing.

8.4 CHEMICAL STORAGE FOR OIL AND GAS

Table 9 – Chemical Storage for Oil and Gas.

Tank	Config.	Chemical Product	Injection flow rate	Selected total volume	Total effective volume	Total volume per tank	Effective volume per tank
			L/h	(m³)	(m³)	(m³)	(m³)
TQ-UQ-1261001-01A/B ¹	2 X 50%	Defoamer - Topside	159	96.3	77.0	48.1	38.5
TQ-UQ-1261001-02A/B ¹	2 X 50%	Demulsifier - Topside	139	84.0	67.2	42.0	33.6
TQ-UQ-1261001-03A/B	2 x 50%	H2S Scavenger - Subsea	125	75.6	60.5	37.8	30.2
TQ-UQ-1261001-04A/F	6 x 17%	Acetic acid (75%)	1159	696.2	556.9	116.0	92.8
TQ-UQ-1261001-05A/B ¹	2 X 50%	Scale inhibitor - Topside	331	199.5	159.6	99.8	79.8
TQ-UQ-1261001-06A/D ¹	4 X 25%	Multifunctional (Subsea defoamer, topside H2S Scavenger, subsea scale inhibitor, asphaltene inhibitor, wax inhibitor, acetic acid 75%)	187	112.6	90.0	28.1	22.5
TQ-UQ-1261001-07A/B ¹	2 x 50%	Demulsifier - Subsea	233	140.0	112.0	70.0	56.0
TQ-UQ-1261001-08A/B ¹	2 X 50%	Scale inhibitor - Subsea	165	99.8	79.8	49.9	39.9
TQ-UQ-1261001-10A/B	2 x 50%	Subsea and topside hydrate inhibitor (ethanol / MEG)	185	112.0	89.6	56.0	44.8
TQ-UQ-1261001-11	1 X 100%	Corrosion inhibitor	4	3.9	3.1	3.9	3.1

Notes:

1. These tanks shall be bipartite.

	TECHNICAL SPECIFICATION	I-ET-3010.2D-1260-940	-P4X-001	F	REV.	С
BR	MARLIM LESTE E SUL			25	of	32
PETROBRAS	TITLE:	ESUP				
	CHEMICAL	INJECTION	INT	ERN	IAL	

8.5 CHEMICAL STORAGE FOR PRODUCED WATER

Table 10 - Chemical Storage for Produced Water.

Tank	Conf.	Chemical product	I product rate Total volume		Total effective volume	Effective volume per tank	Total volume per tank
			(L/h)	(m³)	(m³)	m³	(m³)
TQ-UQ-1262001-01A/B	2 X 50%	Polyelectrolyte	82.8	49.8	39.8	19.9	24.9
TQ-UQ-1262001-02A/B	2 X 50%	Biocide	196.0	117.7	94.2	47.1	58.9
TQ-UQ-1262001-03	1 X 100%	Oxygen scavenger	27.8	16.7	13.3	13.3	16.7

Notes:

8.6 CHEMICAL STORAGE FOR INJECTION WATER

Table 11 – Chemical Storage for Injection Water.

Tank	Config.		Injection flow rate	Total volume	Total effective volume	Total volume per tank	Effective volume per tank
			(L/h)	(m³)	(m³)	(m³)	(m³)
TQ-UQ-1263001-02	1 X 100%	Biodispersant	30	18.1	14.4	18.1	14.4
TQ-UQ-1263001-03A/B	2 X 50%	Biocide	18	10.7	8.6	5.4	4.3
TQ-UQ-1263001-04	1 X 100%	Scale inhibitor	69	16.6	13.3	16.6	13.3

Notes:

9 CHEMICAL LOADING

9.1 DESIGN PARAMETERS

Sufficient area shall be provided for receiving and storing a quantity of tote tanks corresponding to the consumption of chemicals in 10 days at the maximum injection rate indicated in this document at maximum gas, oil, produced water and injection water flowrates. Products of non-continuous use shall not be considered in this calculation. No stacking of tote tanks is allowed. The considered capacity for the tote tanks shall be of 8,4 m³. The complete product transfer between the tote tanks and the Chemical Injection Skids shall be performed through gravity flow, with no need of pumping.

10 LAYOUT REQUIREMENTS

The Chemical Injection Packages will be installed outdoors in a marine environment on the same Module M-14. The design of the Chemical Injection Skids shall comply with the available footprint for the tanks and pumps.

The pumps shall be installed in a deck below the tanks, with available footprint of 25 m \times 20 m \times 2.8 m (L \times W \times H).

^{1.} These tanks shall be bipartite.

^{1.} This tank shall be bipartite.

	TECHNICAL SPECIFICATION	ECHNICAL SPECIFICATION No. I-ET-3010.2D-1260-940-I			С
BR	AREA: MARLIM LE	SHEET: 26	of 3	32	
PETROBRAS	TITLE:	CHEMICAL INJECTION			
	CHEMICAL				

The tanks shall be installed in two decks above the pumps, with available footprint of 25 m x 20 m x 3.5 m (L x W x H) each. Other layout configurations can be considered and reverted to PETROBRAS to approval.

The equipment within the packages shall be arranged such to allow safe and good personnel access for all operation and maintenance activities. The Ergonomic Requirements of I-ET-3010.2Q-1400-196-P4X-001 shall be complied with.

11 SAFETY REQUIREMENTS

During Detailed Design, Chemical Injection System shall be analyzed in PHA and Hazop.

The system shall be designed to assure correct fire detection and an effective firefighting system to protect equipment handling flammable / combustible fluids. In addition, the design shall comply with applicable technical specifications available in DR-ENGP-M-I-1.3-R.8 – SAFETY ENGINEERING GUIDELINE and with the following memorandums: I-MD-3010.2Q-1200-947-P4X-003 – DESCRIPTIVE MEMORANDUM - SAFETY, and I-MD-3010.2Q-5400-947-P4X-002 – CHEMICALS HAZARD ASSESSMENT.

Information regarding fire risk category, fuels and ignition sources can be found at I-FD-3010.2Q-5400-947-P4X-001 – SAFETY DATA SHEET - TOPSIDES for the fire zones related to the chemical units and products storage module (M-14), as well as the requirements for fire and gas detection system and firefighting system.

12 ANNEX

12.1 ANNEX 1 - DIAMETER OF THE VENTS NOZZLES FOR OIL AND GAS INJECTION SYSTEM

Tank	Tank Chemical product	
		in
TQ-UQ-1261001-01A/B	Defoamer - Topside	6
TQ-UQ-1261001-02A/B	Demulsifier - Topside	6
TQ-UQ-1261001-03A/C	H2S Scavenger - Subsea	6
TQ-UQ-1261001-04A/C	Acetic acid (75%)	6
TQ-UQ-1261001-05A/B	Scale inhibitor - Topside	4
TQ-UQ-1261001-06A/B	Multifunctional (Subsea defoamer, topside H2S Scavenger, subsea scale inhibitor, asphaltene inhibitor, wax inhibitor, acetic acid 75%)	10
TQ-UQ-1261001-07A/B	Demulsifier - Subsea	10
TQ-UQ-1261001-08A/B	Scale inhibitor - Subsea	10
TQ-UQ-1261001-10A/C	Subsea and topside hydrate inhibitor (ethanol / MEG)	10
TQ-UQ-1261001-11 A/B	Corrosion inhibitor	6

	TECHNICAL SPECIFICATION	-P4X-001	REV.	С	
BR	AREA: MARLIM LE	SHEET: 27	of	32	
PETROBRAS	TITLE:	CHEMICAL INJECTION			
	CHEMICAL				

12.2 ANNEX 2 - DIAMETER OF THE VENTS NOZZLES FOR PRODUCED WATER INJECTION SYSTEM

Tanks	Chemical product	Diameter of the vent nozzles
		in
TQ-UQ-1262001-01A/B	Polyelectrolyte	3
TQ-UQ-1262001-02A/B	Biocide	4
TQ-UQ-1262001-03	Oxygen scavenger	3

12.3 ANNEX 3 - DIAMETER OF THE VENTS NOZZLES FOR INJECTION WATER INJECTION SYSTEM

Tanks	Chemical product	Diameter of the vent nozzles
		in
TQ-UQ-1263001-02	Biodispersant	3
TQ-UQ-1263001-03A/B	Biocide	2
TQ-UQ-1263001-04	Scale inhibitor	3

	TECHNICAL SPECIFICATION	I-ET-3010.2D-1260-940	-P4X-001	REV.	С
BR	AREA: MARLIM LE	SHEET: 28	of	32	
PETROBRAS	TITLE:	CHEMICAL INJECTION			
	CHEMICAL	INJECTION	INTER	NAL	

12.4 ANNEX 4 – OIL AND GAS INJECTION SYSTEM CALCULATION

		OIL DO	SAGE							
Chemical Product	Injection Point		Continuous (C), Continuous Abnormal (CA) or Shock (SK)	Dosage			Flowrate (m³/d)		ction te (L/h)	
			(erly or or order (erly	Min	Max	Unit	Min	Max	Min	Max
	Production manifolds (downstream liquid sample point)	2					2.385	23.850	2	199
Defoamer	Test manifold downstream liquid sample point	1	(C)	20	200	mL/m³	1.000	10.000	1	84
Deloaniei	Upstream high pressure separator level control valve	2	(0)	20	200	(ppm _v)	2.385	23.850	2	199
	Upstream test separator level control valve	1					1.000	10.000	1	84
	Production manifolds (downstream liquid sample point)	2					2.385	23.850	1	100
Demulsifier	Test manifold downstream liquid sample point	1	(C)	10	100	mL/m³ (ppm _v)	1.000	10.000	1	42
	Upstream pre-oil dehydrator	2					1.394	13.938	1	59
	Upstream oil dehydrator (upstream pre-heater) ⁽¹⁾	2					1.239	12.389	1	52
	Production manifolds (downstream liquid sample point)	2					1.985	19.850	2	166
Scale Inhibitor - topsides	Test manifold downstream liquid sample point	1	(C)	20	200	mL/m³	950	9.500	1	80
·	Downstream Settling Tanks oil pumps (upstream P- 1223002A/D) Upstream oil dehydrator mixing valve		, ,			(ppm _v)	1.985	19.850	2	166
						1.985	19.850	2	166	
	Downstream Oil Cooler (P-1223005A/D)	2	(SK)				1.115	11.150	1	93
	TQ-1223502 (Off-Spec Oil Tank) ⁽²⁾	2	(SK)		20 200	mL/m³	1.115	11.150	1	93
H2S Scavenger - topsides	TQ-5331501A/C (Produced Water Tanks) (2)	3	(SK)	20		200	(ppmv)	1.115	11.150	1
	Transfer header (HULL)	1	(SK)				17.280	172.800	15	1440
	Production manifold	2	(C)			/ 3	1.985	19.850	-	1103
Acetic Acid (75%)	Upstream low pressure separator level control valve	2	(CA)	-	1000	mL/m³ (ppm _v)	1.985	19.850	-	1103
	Test manifold	1	(C)				950	9.500	-	528

Notes:

- 1. Simultaneous injection was not considered at this injection point (demulsifier upstream of the TO) with the others.
- 2. Non-continuous injection. 2 points served by just one head.

BR
PETROBRAS

TECHNICAL SPECIFICATION I-ET-3010.2D-1260-940-P4X-001				REV.	С
AREA: MARLIM LE	MARLIM LESTE E SUL			of	32
TITLE:	INICATION		ESU	P	
CHEMICAL INJECTION			INTERNAL		

12.5 ANNEX 5 - SUBSEA INJECTION SYSTEM CALCULATION

SUBSEA DOSAGE									
Chemical Product	Injection Point	Number of points	Continuous (C) or Shock (SK)	Injection flowrate per well / injection point (L/h)		inj flo	Fotal ection owrate (L/h)		
				Min	Max	Min	Max		
Multifunctional (Defoamer, Scale inhibitor, asphaltene inhibitor, wax inhibitor)	Inside the wells	43	(C)	6	60	6	1,990		
Demulsifier	Inside the wells	43	(C)	5	50	5	995		
Scale Inhibitor	Inside the wells	43	(C)	3	30	3	160		
H₂S Scavenger Subsea	Inside the wells	43	(C)	6	60	6	2,185		
Hydrate inhibitor (Ethanol/MEG)	Wet Christmas tree	43	(SK)	-	-	200	5,000		

[-]-]
BR
PETROBRAS

TECHNIC	AL SPECIFICATION	I-ET-3010.2D-1260-940	-P4X-00)1	REV.	С
AREA:	MARLIM LE	ESTE E SUL	SHEET:	30	of	32
TITLE:	CUEMICAL	INJECTION		ESU	Р	
	IN	ITEDI	ΝΝ			

12.6 ANNEX 6 - GAS INJECTION SYSTEM CALCULATION

GAS DOSAGE										
Chemical Product	Injection Points	Number of points	Continuous (C), Shock (SK) or Continuous	Dosage			Process flowrate basis (m³/d)		Injection flowrate (L/h)	
		points	Abnormal (CA)	MEG	Ethanol	Unit	Min	Max	MEG	Ethanol
	Condensate line from coalescer filter (FT-1233001A/B) upstream TEG Contactor	1	(C)	1	1	L/h	1	5	1	1
	Condensate line from Amine Inlet Gas K.O. Drum (V-1235001)	1	(C)	29,74	22,88	L/h	1.590	15.900	30	23
	Upstream FV-1233034	1	(C)	1,00	1,00	L/h	ı	1.170.000	1	1
	Condensate lines from FT-1235001A/B (inferior chamber and superior chamber)		(C)	2,00	2,00	L/h	1	5	2	2
Hydrate inhibitor (Ethanol/MEG)	Condensate line from V-1233001	1	(C)	1,00	1,00	L/h	1	5	1	1
	Condensate line from V-T-1233001	1	(C)	1,00	1,00	L/h	1	5	1	1
	Gas lift injection lines	23	(CA)	1200	1200	L/h	100.000	1.500.000	1200	1200
	Gas lift header	1	(CA)	1200	1200	L/h	-	-	1200	1200
	Export header	1	(C)	1200	1200	L/h	300.000	3.000.000	1200	1200
	Condensate line from Fuel Gas K.O. Drum (V-5135001)	1		0.5	0.5	L/10 ⁶ scf	1	5	1	1
Corrosion inhibitor	Fuel Gas K.O. Drum (V-5135001) inlet line, upstream the fuel gas pressure control valve	1	(C)	0,5	5 0,5	gas	111.000	1.110.000	1	1
	Export header	1		-	2,2	L/h	300.000	3.000.000	1	2

	TECHNICAL SPECIFICATION	I-ET-301
BR	AREA: MARLIM LE	STE E SUL
	TITLE:	
PETROBRAS	CHEMICAL	INJECTION

I-ET-3010.2D-1260-940		С		
E SUL	SHEET:	31	of	32
		ESU	P	

REV.

INTERNAL

12.7 ANNEX 7 - PRODUCED WATER INJECTION SYSTEM CALCULATION

PRODUCED WATER DOSAGE									
Chemical		Number of	Continuous (C) or	Dosage (ppm _v)		Process flowrate basis (m³/d)		Injed flowrat	tion e (L/h)
Product	Injection Points	points	Shock (SK)	Min.	Max.	Min.	Max.	Min.	Max.
Polyelectrolyte (concentrated)		2		10	100	1985	19850	1	83
Diluction water for polyelectrolyte	Inlet line for gas flotation unit (downstream sampling point)	-	С	-	-	-	-	10	2490
Polyelectrolyte (diluted)	polity	-		-	-	-	-	11	2573
	Settling Tank water outlet	3	С	5	50	1985	19850	1	42
	Test separator water outlet	1	С	5	50	950	9500	1	20
Scale Inhibitor	Pre-oil dehydrator (TO- 1223001) water outlet	2	С	5	50	279	2788	1	6
	Oil dehydrator (TO- 1223002) water outlet	2	С	5	50	124	1239	1	3
	Water reinjection header (downstream produced water filter for reinjection)	1	С	5	50	3970	39700	1	83
	Slop tank	2	SK	-	200	Tank volume	8370	m³	837
	Settling tank	3	SK	-	200	Tank volume	14523	m³	1452
Biocide (1) (2)	Produced Water Tanks	3	SK	-	200	Tank volume	14523	m ³	1452
	TQ-1223502	1	SK	-	200	Tank volume	14523	m³	726
	TQ-5331501A/C water outlet, upstream oxygen analyzer	3	С	100	200	1985	19850	9	166
Oxygen Scavenger	TQ-1223502 outlet	1	С	100	200	720	7200	3	60
	TQ-5336501 outlet	1	SK	100	200	24	240	1	2

No.

Notes:

- The biocide chemical shall be injected directly into the aqueous phase of the slop tanks and produced water settling tank. Continuous and shock dosing of biocide on the TQ-1223501. Estimated minimum and maximum dosages from the biocide dosages for the slop tank point. Only one injection point and only one head to meet the two conditions, continuous and shock dosing. The basis for calculating the continuous flow was the water flow produced.

	TECHNICAL SPECIFICATION	I-ET-3010.2D-1260-940	P4X-001	KEV.	С	
BR	AREA: MARLIM LE	MARLIM LESTE E SUL				
PETROBRAS	TITLE:	INJECTION	ESU	ΙP		
	CHEMICAL	INJECTION	INTER	NAL		

12.8 ANNEX 8 - PRODUCED WATER INJECTION SYSTEM CALCULATION

INJECTION WATER DOSAGE									
Chemical Product	Injection Point	Number of points	,	Dosage (ppm _v)		Process Flowrate Basis (m³/d)		Injection Flowrate (L/h)	
				Min.	Max.	Min.	Max.	Min.	Max.
	Deaerator vessel (1)	1		5	25	15000	47700	4	50
	Booster pumps suction header (1)	1		5	25	15000	47700	4	50
Oxygen Scavenger (Continuous)	Produced water pumps suction header (reinjection) (2)	2	С	5	25	1985	19850	1	42
	Upstream dilution water tank TQ-5115002	1		100	200	251	2510	2	21
	Downstream dilution water tank TQ-5115002	1		100	200	251	2510	2	21
	Downstream TQ- 5115003	1		100	200	91,08	910,8	1	8
Oxygen Scavenger (without	Deaerator vessel (1)	1	SK	100	200	15000	47700	63	398
deaerator)	Booster pumps suction header (1)	1	JK	100	200	15000	47700	63	398
Biodispersant	Downstream of the deaerator by-pass line (1)	1	С	5	20	15000	47700	4	40
Biocida shock	Upstream/downstream of the deaerator (but not at the same time)	1	SK	100	1000	15000	47700	63	1988
Scale Inhibitor	Upstream of ultrafiltration (UT-1251001) pre- treatment	1	O	1	20	8184	81840	1	69

12.9 ANNEX 9 - CHEMICAL PRODUCTS COMPATIBILITY

CHEMICAL PRODUCT	AREA	GROUP	TANK	PUMP
ACETIC ACID	1261	G-1	TQ-UQ-1261001-04A/F	B-UQ-1261001-04A/B
INVERTED EMULSION INHIBITOR	1262	G-1	TQ-UQ-1262001-01A/B	B-UQ-1262001-01A/B
BIOCIDE	1262	G-1	TQ-UQ-1262001-02A/B	B-UQ-1262001-04A/B
OXYGEN SCAVENGER	1262/1263	G-2	TQ-UQ-1262001-03	B-UQ-1262001-05A/B and B-UQ-1263001-01A/B
DEMULSIFIER	1261	G-3	TQ-UQ-1261001-02A/B	B-UQ-1261001-02A/C
H2S SCAVENGER - TOPSIDES	1261	G-3	TQ-UQ-1261001-06A/D	B-UQ-1261001-03A/B
SCALE INHIBITOR - SUBSEA	1261	G-3	TQ-UQ-1261001-08A/B	B-UQ-1261001-08A/N and B-UQ-1261001-06A/N
ASPHALTEN INHIBITOR	1261	G-3	TQ-UQ-1261001-06A/D	B-UQ-1261001-06A/N
H2S SCAVENGER - SUBSEA	1261	G-3	TQ-UQ-1261001-03A/B	B-UQ-1261001-07A/N
HYDRATE INHIBITOR	1261	G-3	TQ-UQ-1261001-10A/B	B-UQ-1261001-10A/D and B-UQ-1261001-14A/F
HYDRATE INHIBITOR - SUBSEA	1261	G-3	TQ-UQ-1261001-10A/B	B-UQ-1261001-13A/B
BIODISPERSANT	1263	G-3	TQ-UQ-1263001-02	B-UQ-1263001-02A/B
BIOCIDE	1263	G-3	TQ-UQ-1263001-03A/B	B-UQ-1263001-03A/B
GAS CORROSION INHIBITOR	1261	I-1	TQ-UQ-1261001-11	B-UQ-1261001-11A/B
DEFOAMER	1261	G-1, G-2 or G-3	TQ-UQ-1261001-01A/B	B-UQ-1261001-01A/C
SCALE INHIBITOR - TOPSIDES	1261/1262	G-1, G-2 or G-3	TQ-UQ-1261001-05A/B	B-UQ-1261001-05A/C and B-UQ-1262001-03A/C
WAX INHIBITOR	1261	G-1, G-2 or G-3	TQ-UQ-1261001-06A/D	B-UQ-1261001-06A/N
SCALE INHIBITOR	1263	G-1, G-2 or G-3	TQ-UQ-1263001-04	B-UQ-1263001-04A/B

⁽¹⁾ Minimum process flowrate is the maximum injection flowrate per injection water slot (15.000Sm³/d) and maximum process flowrate is the system's nominal capacity (47.700 Sm³/d).
(2) Maximum process flowrate on produced water header is the flowrate of produced water train (19.850Sm³/d).